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Abstract

Network storage providers are usually untrusted. Even if a provider encrypts the
files on behalf of its users, data confidentiality is at stake, as the secrets which were
used to encrypt the files are in the provider’s hands. To overcome this issue, we
devise a network storage system which encrypts files on the client-side. Moreover,
our system offers the ability to share files within groups. Since group membership
can be dynamic, we propose a key management scheme for confidential file sharing
in dynamic groups. Furthermore, this thesis presents a protocol and an algorithm
which enable file versioning as well as synchronization. Finally, we provide a fully-
functional prototype implementation of our secure network storage service. The
implementation has proved to be performant in our test environment.
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Chapter 1

Introduction

Most network storage services provide online storage of client data and file synchro-
nization. Moreover, these services typically support encrypted data transmission
as well as server-side encryption, but lack client-side encryption. With server-side
encryption, the keys are handled by the service provider on behalf of its users. The
problem with server-side encryption is that the server provider has direct access to
the plaintext, as it is able to access the keys which were used to encrypt the files
on the server-side. Even if the provider was absolutely trustworthy, an attack on its
infrastructure could result in a data security breach, as the keys for the encrypted
data are located at the provider. Furthermore, it is possible that the provider co-
operates with private or federal organizations which could gain access to confidential
client data through collusion.

Storage providers may keep the data of their users in a cloud. Despite the advantages
of cloud storage, such as high availability and low costs, transferring data to the cloud
raises concerns. In 2008, Richard Stallman talked about privacy concerns in clouds:
“computer users should be keen to keep their information in their own hands, rather
than hand it over to a third party” [Bob08]. Note that means other than hacker
interventions may result in the disclosure of private data. For example, a software
malfunction in Google Docs in 2009 was enough to lead to unauthorized access to
user data [CKS09]. Moreover, cloud services might not ensure data integrity. For
instance, a malfunction at Amazon caused silent data corruption of user data stored
on Amazon’s S3 (Simple Storage System) storage cloud in 2008 [CKS09]. Therefore
measures which keep the trust put into the cloud provider at a minimum level are
necessary.

Although modern data-hosting services provide security features, the confidential-
ity of private data might still be at stake. For example, the popular file-hosting
service Dropbox [Dro12a] offers over-the-wire and server-side data encryption, but
not client-side encryption. Therefore attackers which compromise Dropbox servers,
might gain access to confidential user data. In addition, when the U.S. govern-
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ment demands data of Dropbox users, Dropbox Inc. must hand over the data (cf.
Chapter 2).

When services such as Dropbox which only deploy secure data transmission and
server-side encryption become victims of attacks, the confidentiality of all client
data is threatened. Client-side encryption is an effective measure to prevent persons
and parties who have or can request access to the server data from reading client
files. With client-side encryption, files are encrypted before they are uploaded to
the server. An intruder in the server’s network would need to obtain the secret keys
of the client in order to be able to decrypt the files and read the plaintext.

Users might encrypt their data with tools such as TrueCrypt [Tru12], BoxCryp-
tor [Sec12a], or SecretSync [Com12a] before they submit them to their Dropbox.
However, group sharing becomes cumbersome with such tools, as they lack group
key management capabilities. Therefore users must reveal their own passwords to
group members. Moreover, using such tools along with Dropbox, might render file
synchronization inefficient (cf. Chapter 2).

The service Wuala [LaC12a] provides client-side encryption, but the source code of
the client and server are not published. Therefore it is not known whether Wuala
contains backdoors (cf. Chapter 2).

There are many other synchronization services besides Dropbox and Wuala. How-
ever, their security features are often opaque to the user (cf. Chapter 2).

This work presents the design of a secure network storage service and discusses
design alternatives. Moreover, this thesis explains the workings of the service in
detail and provides a proof of concept in form of a multi-platform prototype.

Our solution relies on a client-server architecture. The service makes use of client-
side encryption to provide file content confidentiality. It also protects the integrity
of file content. Confidential group sharing is another distinguishing feature of our
designed solution. Additionally, file synchronization and file versioning constitute
an integral part of our service. Further design goals include, but are not limited to,
simplicity, usability, and performance.

1.1 Challenges

Users may have multiple devices containing files which they want to synchronize with
a server owing to availability. Additionally, users want to be sure that the files which
they get from the server were not tampered with, i.e. clients must check whether
the received file content was generated by an authorized client. This requires an
appropriate integrity protection mechanism. Moreover, users might desire to share
their files with other users in a confidential manner, meaning that unauthorized
parties including adversaries on the server must be unable to read the contents of
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shared files. In order to achieve this goal, we rely on client-side encryption, thereby
ensuring file confidentiality, even when the storage provider is compromised. In turn,
client-side encryption leads to the following challenges which motivated the design
of our secure network storage service:

Encrypted file synchronization. When a client synchronizes its files with the
server, changes from the client replica must be propagated to the server replica
and vice versa. In order to prevent adversaries who are on the server from
reading stored files, the server must not get access to the plaintext of client-
supplied files. Therefore clients submit file ciphertexts rather than plaintexts
to the server. Consequently, the server replica consists of ciphertexts only.
However, on the client-side, the user works with the plaintext of files. Storing
the ciphertext on the client-side as well, causes overhead, but allows to directly
compare the client’s ciphertexts to the server’s ciphertexts. The challenge here
is to find a computationally efficient solution that allows to propagate changes
from clients to the server and vice versa. The storage space consumption
of the solution should be low. Moreover, it is desirable to only exchange
file changes rather than entire files between the client and server in order to
keep network traffic low. Owing to client-side encryption, file changes can
be computed based on ciphertexts or plaintexts. Both possibilities have their
advantages and drawbacks which a suitable synchronization algorithm must
take into account.

Dynamic group sharing. Sharing files in dynamic groups requires appropriate
access control and key management schemes to prevent past group members
from accessing the group’s data. Thus, when a member leaves a group, the
server should revoke access rights of the leaving member and the group key
needs to be renewed. Joining group members must obtain the group key.
Therefore another challenge associated with dynamic group management is to
find a suitable key distribution mechanism.

1.2 Contributions

Our secure network storage service makes the following key contributions:

Encrypted file synchronization algorithm. We devise an algorithm that allows
to efficiently synchronize encrypted client files with a server. Our file synchro-
nization algorithm supports file versioning and file differences. Owing to file
versioning, the server saves and keeps every file version that clients upload.
The server does not remove files. Consequently, clients are able to restore lo-
cally deleted files, if the file to restore had been synchronized with the server.
As our file synchronization algorithm takes file differences into account, we
synchronize changes between file versions rather than entire files. Section 3.8
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presents the details our algorithm, while Section 2.4 discusses related work.

Group key management scheme. We designed a group key management
scheme that allows to share files in dynamic groups. File content confiden-
tiality is provided for shared files through client-side encryption using the
group key. A strength of our key management approach is its simplicity. Sec-
tion 3.7 presents our key management scheme, while Section 2.2 presents other
schemes.

Fully-functional prototype implementation. We realized a fully-functional
prototype implementation of our service. It allows developers to write their
own cryptographic and file difference plug-ins. Our service is compatible with
various platforms, as it is written in Java, and showed better performance than
Dropbox in our test environment. Chapter 4 describes the implementation in
detail.

1.3 Roadmap

The rest of this thesis is organized into five chapters. Chapter 2 presents related
work and draws comparisons to our solution. Chapter 3 presents the design of our
secure network storage service. Moreover, it discusses alternative designs as well
and defends the chosen approach. An overview of the implementation is provided in
Chapter 4. Chapter 5 evaluates the implementation and design. Finally, Chapter 6
recapitulates on the key contributions of this thesis and suggests directions for future
research.
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Chapter 2

Related Work

This chapter provides an overview of related work. Section 2.1 discusses generic
file synchronization services. Section 2.2 presents selected services from research
which allow to share files in groups. Ideas from literature on how to manage access
hierarchies are the subject of Section 2.3. In Section 2.4, we discuss related file
synchronization algorithms.

2.1 Generic File Synchronization Services

Dropbox [Dro12a] is a popular file synchronization service that offers server-side
encryption, but lacks client-side encryption. Files are sent from the Dropbox desktop
client to the server over a 256-bit SSL (Secure Sockets Layer) connection where
supported. Files are encrypted using AES-256 (Advanced Encryption Standard with
256-bit keys), after they had been uploaded, i.e. on the server-side [Dro12b]. Thereby
Dropbox manages the keys on their user’s behalf in order to be able to provide the
most popular Dropbox features “like accessing ... files from the website, creating file
previews, and sharing files with other people” [Dro11] without hassles. Although
keys and data are stored on separate hosts in the Amazon S3 data center [Jef11],
a remote entity manages the keys. Moreover, as Dropbox Inc. is located in San
Francisco, U.S. law obligates the company to hand over user data to the government
when the government demands it [Dro11]. In contrast, our service employs client-
side encryption, while still offering group sharing (cf. Section 3.3).

Dropbox Inc. recommends users who want to manage keys on their own “products
like TrueCrypt [Tru12] to store encrypted volumes within their Dropboxes” [Dro11].
There are also other products such as SecretSync [Com12a] which provide client-
side encryption by encrypting the client’s files before they are put into the Dropbox
folder. The key is either derived from a user’s passphrase or is stored in its entirety
in the SecretSync data center [Com12b]. However, since TrueCrypt and SecretSync
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use only a single key per volume or file tree, respectively, group sharing becomes
cumbersome. BoxCryptor [Sec12a] is a similar tool which allows to encrypt and
decrypt files from a certain folder and synchronize the ciphertexts using Dropbox
or other services. It uses a single master key and dedicated keys for each folder
which are encrypted with the master key [Sec12b]. Moreover, changing the key
would result in a lot of overhead, as all files would need to be encrypted with the
new key and transferred to Dropbox. BoxCryptor is only able to share subfolders
with a workaround [Sec11]. The sharer has to reveal her BoxCryptor password
from which the master key is derived. Moreover, using these tools in conjunction
with a synchronization service, separates file encryption from file synchronization,
since the file synchronization service is merely able to synchronize the ciphertexts
as provided by the tools. When a minor plaintext change results in a significantly
larger ciphertext difference owing to the employed cipher mode, the synchronization
service will synchronize the large ciphertext change rather than the small plaintext
change. Consequently, file synchronization is not as efficient, as it could be. On
the contrary, our service synchronizes encrypted files efficiently (cf. Section 3.8). In
addition, we properly support group sharing (cf. Section 3.7).

The online storage system Wuala [LaC12a] provides client-side file encryption and
sharing through a cryptographic file system named Cryptree [GMSW06]. How this
cryptographic file system works is explained in Section 2.3. Wuala stores the client’s
data redundantly across several data centers in Europe. Although the source code of
Wuala’s Webstart [Gee12b] is available, the desktop clients and the server software
are closed source. However, Webstart is just a Java applet that loads the actual ap-
plication code from a server. Therefore Wuala might contain a backdoor, as the core
of the code is unpublished. LaCie AG develops and runs Wuala in Zürich [LaC12b].
Our network storage service, however, works on top of existing file systems and is
consequently not integrated into a file system (cf. Section 3.4.1). Thus, we gain cross-
platform compatibility and can take advantage of the features which the underlying
file system offers. Additionally, our key management scheme is simple and there-
fore transparent (cf. Section 3.7). Moreover, since our protocol (cf. Section 3.11) is
public, developers have the possibility to write their own backdoor-free client and
server. Developers may also extend our client software with cryptography and diff
plug-ins (cf. Section 5.4).

Apart from Dropbox and Wuala, many other data synchronization services exist.
Web page [Raj10] lists selected data synchronization services and their features. As
there are many online storage systems with different features whose workings are
often unmentioned or cannot be checked, it is difficult to pick a secure, reliable,
and functional service. In addition, article [G.F11] points out that synchronization
service vendors sometimes mislead their users with their product descriptions.
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2.2 Group Key Management

In order to synchronize and share confidential data within dynamic groups, we need
a scheme which enables group key management. A group key management takes into
account that keys must be renewed when a member leaves. We use the term rekeying
for key renewals. When a member joins a group, the new member needs to get the
current group key. Therefore an appropriate group key distribution mechanism is
necessary.

Work in group key management can be divided into basic, hierarchical, batching,
and trade-off schemes [JA03]. While the basic schemes do not offer efficient rekey-
ing measures, hierarchical management schemes try to reduce rekeying overhead.
Batching schemes reduce rekeying overhead by batching a number of joins or leaves
before rekeying rather than updating the key on every membership change. It
was shown that the number of rekeying messages for a group of n members is
bounded by Ω(log(n)), if strict non-member confidentiality and non-collusion were
required [FJA02]. Strict non-member confidentiality means that all entities which
do not belong to the group are unable to derive the group key. Consequently, non-
members cannot decrypt data that was encrypted with the group key. Collusion
means that former group members co-operate in order to gain further information
about the current group key. Trade-off schemes decrease the overhead beyond the
Ω(log(n)) bound by trading off some collusion resistance [JA03]. Group key man-
agement is a broad field which we will not discuss here in-depth. Instead, we refer to
the survey of group key management schemes [RH03] for an overview of solutions. In
the following, we present some network storage services from literature and outline
the role of group keys in these solutions.

The read-only, cryptographic file system Chefs [Fu05] employs group keys and con-
tent keys. Group keys are distributed over a secure, out-of-bound channel. Content
keys are used to encrypt content and are stored in a lockbox. A lockbox is a “key
encrypted with another key” [Fu99]. The lockbox metaphor refers to boxes used by
real estate agents: Realtors put so called lockboxes on the door of houses for sale.
These lockboxes contain the key to the house. Persons who know the combination to
open the lockbox can enter it in order to get the key to the house [Fu99]. In Chefs,
the content key of a lockbox is obtained by decrypting the lockbox with the group
key. Our service relies on a secure, out-of-bound group key distribution as well (cf.
Section 3.7). Although our design allows to integrate lockboxes, we do not adopt
that concept (cf. Section 3.7). We distinguish between content and integrity keys (cf.
Section 3.6.1). Moreover, our network storage service is layered above existing file
systems, thereby gaining some positive properties (cf. Section 3.4.1). Furthermore,
we provide efficient file synchronization and versioning mechanisms (cf. Section 3.8).
File versioning enables users to restore old file versions.

Within the cryptographic storage file system Cepheus [Fu99], a lockbox contains a
list consisting of multiple copies of a single file key. Each entry of the list, i.e. each
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file key copy, is encrypted with the public key of a certain group member. Therefore
the size of the list grows linearly with the number of group members. A group
database server maintains lockboxes, user public keys as well as group membership
lists, while a file server maintains group access rights [Fu99]. A user agent stores
the private key of the corresponding users. When the user agent needs a group or
file key, it requests the respective lockbox from the group database server and opens
the lockbox with the user’s private key. Our server controls access to resources as
well (cf. Section 3.7). However, we do not provide a group database server, as we
let resource owners distribute group keys out-of-bound (cf. Section 3.7), thereby
avoiding a single point of failure which we would need to trust for key distribution.
As our service acts on top of the file system layer, it is compatible with many
operating systems. If our service were implemented as a file system, we would need
to port the file system to the operating systems which we wanted to support.

SiRiUS [jGSMB03] is a secure storage file system which is layered on top of untrusted
network and storage file systems. For each file, there is a metadata file namedmd-file.
Keys are stored in metadata files using the concept of lockboxes. For each user who
is allowed to access a certain file, the corresponding md-file contains a lockbox which
is encrypted with the public key of the user. Depending on the access rights of the
user, her lockbox contains at least a symmetric file encryption key for read access and
a file signature key for write access. As for key distribution, [jGSMB03] recommends
to use PKI, Identity-Based Encryption (IBE), or signature schemes, depending on
the requirements of the user. SiRiUS supports symbolic links, file name encryption,
and random data block access. Paper [jGSMB03] mentions an extension called
SiRiUS-NNL which scales better with the number of users. The scheme on which
the extension is based, NNL (Naor-Naor-Lotspiech), enables efficient key revocation.
In contrast, our service employs only symmetric cryptography and does not use
lockboxes (cf. Section 3.7). Moreover, our service does not support symbolic links,
file name encryption, and random data access (cf. Section 3.3). However, we provide
efficient file synchronization and versioning (cf. Section 3.8).

FARSITE (Federated, Available and Reliable Storage, for an Incompletely Trusted
Environment) [ABC+02] is a secure and scalable file system which behaves like
a central file server, though it is distributed over several untrusted machines. It
guarantees file and directory integrity through a Byzantine-fault-tolerant protocol.
Availability and reliability are provided by replication. When a user creates a file,
she generates a random symmetric key. The key is encrypted with the public keys
of all authorized readers. These lockboxes are stored along with the file. Note
that files are encrypted block-wise with a one-way hash of the block used as the
key. The hash of the block is encrypted with the key inside the lockbox and the
resulting information is stored along with the block. File names are also encrypted
with symmetric keys and the keys are kept in lockboxes which belong to directory
metadata. File integrity is provided by building a Merkle hash tree [Mer80] over
the file’s data blocks. Although our service does not rely on lockboxes, it supports
confidential group sharing of files as well (cf. Section 3.7). On the contrary, we do
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not provide file integrity on the block-level. Instead, we protect the integrity of
certain metadata which in turn includes a cryptographic hash of the file’s content
(cf. Section 3.2). We support file versioning and synchronize file changes, whereas
FARSITE provides only block-level file access.

Plutus [KRS+03] is another cryptographic storage file system. It groups files with
the same access rights into filegroups. Files of a filegroup share the same key without
sacrificing security. One advantage of filegroups is that they reduce the number of
keys. Therefore filegroups facilitate key distribution and key management. Plutus
makes use of lockboxes to protect file content keys: File content keys reside inside a
lockbox which is encrypted with a symmetric filegroup key. Thus, file content can be
protected with different keys. This measure potentially decreases the vulnerability
to known-plaintext and known-ciphertext attacks. As lockboxes are encrypted with
a symmetric key, the size of a lockbox is constant. The symmetric filegroup keys
are distributed by the owner over a secure-channel. Apart from symmetric filegroup
keys, there also exists a public/private key pair for integrity protection. The key
pair is used to sign and verify the cryptographic hash of the file content. Plutus
encrypts names with file-name keys and filegroup-name keys which are distributed
by the owner of the resource. We adopt the filegroup concept, as we use the same key
for multiple files in the folder tree (cf. Section 3.7). Moreover, we let keys distribute
out-of-band as well. However, we use a keyed MAC rather than a public/private key
pair for integrity protection (cf. Section 3.7). Furthermore, we provide file versioning
and synchronization.

PrPl [SSN+10] is a decentralized social networking infrastructure providing privacy-
preserving information exchange. It uses so called Butlers which manage data
on behalf of the users. Each Butler is associated with a public/private key pair
and is able to grant tickets for data access. A Butler employs the decentralized
OpenID [Ope12] system for identity management. PrPl application developers can
utilize the SociaLite query language which allows to request information from a
network of Butler services. On the contrary, our service relies on a client-server
architecture for file distribution (cf. Section 3.4.1). Since the server is always online,
we ensure data availability. Moreover, we take measures which enable file synchro-
nization and versioning.

RFC 4046 presents the Multicast Security (MSEC) Group Key Management Archi-
tecture [Bau05]. Part of the architecture is the Group Controller and Key Server
(GCKS) which takes care of group member authentication, authorization, and may
provide rekey information distribution. RFC 4046 [Bau05] describes the correspond-
ing protocols in detail. We distribute keys over a secure out-of-bound channel and
thus do not depend on an infrastructure for group key management (cf. Section 3.7).
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2.3 Key Management for Access Hierarchies

When users decide to share different folders with different groups, each shared folder
must be equipped with a dedicated set of keys. In order to bequeath the access rights
of a folder to another folder, a key management scheme is necessary. Paper [ABFF09]
provides an elegant and efficient approach to handle key management in an access
hierarchy. The access hierarchy is modeled as a directed graph where a key is
assigned to each vertex and users who possess the key of a vertex can also access
descending vertices through key derivation. As the access hierarchy model is a
directed graph which may contain cycles, the key management scheme is applicable
to many access hierarchy structures. For example, the vertices could be interpreted
as files or folders of a file system tree hierarchy. The approach is suitable for role-
based access control (RBAC) in which case the vertices represent the nodes of the
role-based access hierarchy. The scheme relies on a trusted central authority which
generates and distributes the keys.

Solution [ABFF09] has the following six properties:

1. Only hash functions are used to derive keys for descendant vertices of a vertex.

2. The space complexity for storing the public information of the hierarchy is
equal to the space complexity of the hierarchy itself.

3. The private information of a vertex consists of a single key.

4. Updates of access rights can be handled locally in the hierarchy.

5. The scheme is provably secure against collusion.

6. The complexity of key derivation for a vertex is linear in the length of the path
between an ancestor for which the key is known and the vertex.

In the base scheme [ABFF09], one key is assigned to each node. The keys which are
to be distributed by a trusted entity, constitute the private information. The public
information consists of a unique label which is assigned to each node. Additionally,
edges belong to the public information. An edge (vi, vj) from vertex vi to vertex vj
is associated with the public value yi,j = kj−H(ki, lj) where kj is the key of node vj,
ki is the key of node vi, H is a cryptographic hash function, and lj denotes the label
of node vj. The operator − denotes subtraction in a finite field F . All keys and
all images of H must be in the corresponding set of F . For example, in the Galois
field GF (2q) where q is a positive integer, an element of GF (2q) can be represented
as a bit array of size q. Then the bit-wise exclusive or (XOR) operation serves as
both addition and subtraction. With the knowledge of yi,j , lj, H (all public), and
ki (private), we can compute the key kj of the descendant node vj of node vi with
the formula kj = yi,j +H(ki, lj).

Paper [ABFF09] describes an adaption of the base scheme called the dynamic version
which allows to perform all changes of the hierarchy locally. The modification to

10



the base scheme is to use the key ki = H(k̂i, li) for the vertex vi. The random
key k̂i must be distributed to all entities who are assigned access level vi. This
small modification makes it possible to change an access key of a node merely by
changing the label of the node. Preventing ex-member access to a node v is done by
changing its label and updating the edge values of all edges pointing to v apart from
the edge which originates from the ex-member. The edge from the ex-member node
to v has to be deleted. Paper [ABFF09] explains how the actions edge insertion,
edge deletion, node insertion, node deletion, key replacement, and user revocation
are performed.

An advantage of the scheme outlined in this section is that it is very flexible, as the
hierarchy is modeled as a directed graph. Therefore the scheme supports complex
access hierarchies. File or folder links can be modeled by representing files and
folders as nodes. A link is then an edge from a node to a file/folder node. Users can
be modeled as nodes and their access rights to resources, such as file and folders,
can be represented as edges to resource nodes in the graph. Shortcuts, i.e. edges
from a user node to a resource node, could be added in order to get constant time
access to a resource. A drawback is that the server needs to handle and save public
information (node labels and edges of the graph) in order to provide availability. This
forces clients to trust the server with respect to managing the public information.
Furthermore, user revocation might require plenty of graph updates [ABFF09]. As
the graph can become arbitrarily complex with time, especially when there are many
users and large groups, users and group members might lose track of access rights.

Another structure for key management in access hierarchies is Cryptree [GMSW06].
Cryptree is a cryptographic tree structure for access control on untrusted storage.
It fulfills the three criteria semantics, efficiency, and simplicity. The term semantics
refers to having intuitive and useful access control semantics, as well as to supporting
confidentiality and dynamic inheritance of access rights. Efficiency means that the
number of keys managed should not grow proportionally to both the number of
involved users and the number of files. Simplicity demands that the access scheme is
easy to understand and implement. Cryptree uses some of the techniques described
in Section 3.7.4 to manage the keys. It keeps file and folder names confidential.
Moreover, Cryptree supports downward as well as upward inheritance of access
rights, and provides access rights confidentiality.

The main data structures of Cryptree are based on cryptographic links. There are
two kinds of cryptographic links: symmetric and asymmetric links. Let k1 and k2
be two keys. The result of encrypting k2 with k1 using a symmetric cipher is called
a symmetric cryptographic link. Thus, k2 can be derived from k1 and the link by
decrypting the link with k1. An asymmetric link is the result of encrypting a key
k2 with a public key. The public key can be stored with the resource, whereas the
private key k1 needs to be kept secret. Hence, k2 can be derived from k1 and the
link by encrypting the link with k1. The Cryptree data structures consist of keys
and cryptographic links.
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One advantage of Cryptree is its ability to grant access rights to a folder including all
its subfolders in constant time. Furthermore, Cryptree allows to dynamically inherit
access rights, which prevents scattering of access rights. Moreover, Cryptree enables
its users to grant access to a file or folder without revealing other resources. Symmet-
ric cryptography is sufficient for most features, i.e. Cryptree does not necessarily de-
pend on costly asymmetric cryptography. However, paper [ABFF09] presents a more
flexible approach than Cryptree, as the underlying access control model is based
on graphs rather than folder trees. In addition, key derivation scheme [ABFF09]
is based on hash functions and therefore more efficient by a constant factor. As
Cryptree supports granting fine-granular write access, users may lose track of ac-
cess rights. Although scheme [ABFF09] requires full access to the graph for granting
write access to a user, it supports user hierarchies. On the contrary, Cryptree cannot
manage user hierarchies.

In contrast to the two aforementioned schemes, our key management scheme focuses
on transparency. Section 3.7 discusses our scheme in detail.

2.4 File Synchronization

The rsync protocol [Tri99, Tri12] allows to efficiently synchronize files and fold-
ers from a source folder tree to a destination folder tree. In order to synchronize
changes, the source sends a file list containing pathnames and metadata information
to the receiver. The receiving side then compares the file list to its local tree, skips
unchanged files, and synchronizes changes from the sender. To synchronize changes
of a file, the receiver generates checksums of the file blocks and transfers them to
the sender. The sender figures out the differences between its and the receiver’s
file (cf. Section 3.8.2) and sends the changes to the receiver which updates the file
accordingly. The file synchronization tool Unison [Pie12b] uses the rsync algorithm
for performing updates [Pie12a].

Subversion [Fou12] is a version control system which records changes made to a
folder tree, including file content changes. Versioning on the server is done using
the bubble-up method [Col00]: in order to reflect changes, a new folder tree is built
bottom-up from the change location. The root of the newly built tree is linked with
the repository’s revision array. Only the latest revision of a resource (file or folder
node) is stored completely. Previous revisions of a resource are stored as diffs (dif-
ference file) to subsequent resources. Subversion eliminates some problems [Col00]
of the Concurrent Versions System (CVS) [Inc12] version control system.

We do not provide all features which version control systems such as Subversion offer.
For instance, we do not maintain multiple branches of a directory. However, our own
file synchronization approach is efficient, since we transmit file changes rather than
whole files. Another strength of our approach is that the server file hierarchy (cf.
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Section 3.5) and the client file hierarchy (cf. Section 3.8.1) are simple. Furthermore,
we support file versioning. A significant feature of our file synchronization algorithm
is that it is able to synchronize unencrypted client files and encrypted server files.
Section 3.8 presents our algorithm in detail.
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Chapter 3

Design

This chapter outlines the design of the secure network storage service. It discusses
design alternatives and justifies design decisions.

Section 3.1 presents the threat model on which our design is based. A classification
from a security perspective of our network storage service is provided in Section 3.2.
Section 3.3 discusses features of network storage systems and points out which fea-
tures were considered in the design phase and implementation. Section 3.4 deals
with client-server communication. It also discusses how the client authenticates
itself towards the server. Section 3.5 deals with the design of the server’s file hier-
archy. The type of keys our service manages, key generation, and the integration of
keys are outlined in Section 3.6. Section 3.7 presents possible ways to manage keys.
Section 3.8 explains how clients synchronize their files with the server. Section 3.9
deals with how the client and server handle concurrent access. Section 3.10 explains
how the clients and server cope with message omissions as well as system crashes.
The communication protocol is defined in Section 3.11.

3.1 Threat Model

In this section, we discuss the threats which influenced the design of our storage
security service. Section 5.3 deals with concrete attacks, their implications, and to
which extent we counter them.

Paper [HMLY05] links the four CIAA (confidentiality, integrity, availability, au-
thentication) aspects to storage systems. In the following, we discuss each aspect
considering the security of our storage system service:

Confidentiality. Adversaries may attempt to read information that is present on
the server without proper authorization. Server administrators, hackers which
gained access to the server, and parties that collude with the server are poten-
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tial adversaries. In addition, former group members are potential adversaries.
The information may include client-supplied file contents and file metadata.
On the server-side, data may be present on disk or in memory.

Integrity. Adversaries may attempt to modify information on the server without
proper authorization. An attack may involve changing, adding, and destroying
file content or metadata. Potential adversaries include server administrators,
hackers that compromised the server, parties which collude with the server,
and former as well as malicious group members.

Availability. The goal of an availability attack is to render the server unavailable.
Any entity might attempt to carry out an availability attack. Denial-of-service
(DoS) attacks aim to make services unavailable. A DoS attack may involve
exhausting storage, network, memory, and computing resources through legit-
imate usage. Therefore DoS attacks are difficult to prevent.

Authentication. Adversaries may attempt to masquerade as legitimate users in
order to read (confidentiality) or modify (integrity) information that is stored
on the server. Attackers that masquerade as a legitimate user might also
prevent others from accessing the server (availability). Moreover, adversaries
may try to masquerade as the server in order to access (confidentiality) or
modify (integrity) client information. In addition, an attacker which masquer-
ades as the server might deny others access to the actual server information
(availability).

3.2 Security Classification

This section classifies our network storage service from a security perspective. We
define the involved players in Section 3.2.1. Additionally, we consider potential at-
tacks in Section 3.2.2. Moreover, we summarize how our service realizes security
primitives (Section 3.2.3) and discuss the granularity of protection that our ser-
vice provides (Section 3.2.4). Our classification is based on the criteria from the
framework for evaluating storage system security [RKS02].

3.2.1 Players

The following players interact with our network storage service (cf. Section “Players”
of paper [RKS02]).

• We distinguish between owners, readers, and writers. An owner is the unique
entity that is allowed to enforce and change access rights of a shared folder.
Owners may always read and write their data. A reader is an entity that is
allowed to read data. A writer is an entity that is allowed to both read and
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write data. Therefore a writer is also a reader by our definition. Owners are
writers of their data.

• A group is a set of readers, writers, and owners. A group is associated with
exactly one shared folder and hence with exactly one owner.

• The storage server is the machine that stores client-supplied data. The group
server manages group access rights. Since the storage server and group server
services run on the same machine, we use the general term server to refer to
that central machine.

• A client is the software that communicates with the server. We use the terms
client and client daemon interchangeably.

• Users are persons who run clients.

3.2.2 Attacks

The following list presents potential attackers. Section “Attacks” of paper [RKS02]
served as a basis for the construction of the list.

• Registered users who do not belong to a group and unregistered adversaries
are potential attackers.

• Evicted group members may be adversarial.

• Malicious group members are potential attackers.

Attackers may either conduct their attacks alone or collude with the server. Each
kind of attacker may attempt to carry out the following three attack types (cf.
paper [RKS02]):

Leak. Adversaries try to gain access to unencrypted file content when they carry
out a “leak” attack.

Change. A “change” attack involves carrying out valid modifications, i.e. modifi-
cations which readers cannot detect as incorrect.

Destroy. During a “destroy” attack, adversaries conduct invalid modifications, i.e.
modifications which readers are able to identify as incorrect.

In addition, we consider the following three attack types:

• Attackers may be present on the wire and execute “message attacks”:

– Eavesdroppers may attempt to read data that is exchanged between the
client and the server over the network.
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– Man-in-the-middle attackers may try to masquerade as the client or
server. Moreover, such adversaries may attempt to modify transmitted
data.

• Adversaries may attempt to launch denial-of-service attacks.

• Adversaries that have gained access to the group server may start attacks.

We discuss the resistance of our service against attacks which these adversaries may
attempt to carry out in Section 5.3.

3.2.3 Security Primitives

The following list discusses to which extent we realize the six security primitives
from Section “Core security primitives” of paper [RKS02].

Authentication. Players are authenticated in order to determine their identity
and to authorize their actions. Our authentication service is provided by the
group server and is therefore centralized. The server authenticates clients and
authenticates itself towards clients using the TLS protocol.

Authorization. Authorization enables owners to delegate access to other players,
thereby building a group. The owner sets access rights of other players on the
group server that authorizes clients. Additionally, the owner distributes keys
to the other group members over a secure, out-of-bound channel.

Securing data on the wire. We secure all data on the wire using TLS which
provides both data integrity and data confidentiality for transmitted data that
is exchanged between a client and a server.

Securing data on disk. As the server might be compromised, clients do not pro-
vide the server with unencrypted file contents. Clients encrypt file contents
prior to sending them to the server with a symmetric cipher. However, clients
do not encrypt metadata.

Key distribution. Owners distribute keys to readers and writers. The group
server is not involved in key distribution. Writers and readers use keys to
encrypt and decrypt data on the client-side. Apart from the keys that are
used to provide confidentiality, our service relies on further, independent keys
to offer protected metadata integrity. For each confidentiality key, an integrity
key with the same version number exists, while the inverse is also true (cf. Sec-
tion 3.6.1).

Section 4.4.3 lists the metadata which the server stores. Clients supply the
server with metadata PUT file requests (cf. Section 3.11). The client-supplied
metadata is a subset of the metadata which the server saves. A metadata field
is either protected or unprotected. The following metadata fields are protected:
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• is diff value

• file size

• cryptographic hash of file content

• key version number

• extra value

The following metadata fields are unprotected:

• id value

• owner name

• folder name

• file name

• server-generated modified time stamp

• history version number

• MAC value

Writers can prove that they have the required keys by providing a keyed MAC
based on the concatenation of protected metadata fields as the input message
(cf. Section 3.11). Readers can use the keyed MAC in order to check whether
the writer was allowed to carry out the change.

As the protected metadata includes a cryptographic hash of the file content, we
provide file content integrity. However, clients cannot tell whether files which
they receive from the server are fresh, i.e. the server might supply clients with
an old file rather than with the actually requested, newer file.

Revocation. Revocation involves withdrawing access rights from past group mem-
bers by changing the group key. We provide member eviction through lazy
revocation, as we defer file re-encryption to the next time the file is updated.
Clients never re-encrypt files which are already present on the server. Owners
revoke access rights from past group members by updating the access rights
on the group server as well.

3.2.4 Granularity of Protection

The following list outlines the granularity of protection that our service offers. The
criteria are based on Section “Granularity of protection” of paper [RKS02].

• Owners distribute keys to group members who are allowed to access group
data. Therefore group membership is distributed. Moreover, the owner sets
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access rights on the group server. Hence group membership depends on a
centralized entity as well.

• The keys used to encrypt data on the wire are short-lived, as TLS uses session
keys.

• The keys for data confidentiality and integrity on the clients are long-lived, as
they are only renewed after they had been leaked.

3.3 Features

This section discusses potential features of network storage services. The following
features were considered in the design phase and addressed in the implementation
(cf. Chapter 4).

Client-side encryption. Client-side encryption is one of the most significant and
distinguishing features of our service. While some network storage services
such as Wuala offer client-side encryption, many services merely provide server-
side or over-the-wire encryption (cf. Chapter 2). The user interactions required
to realize client-side encryption are to be kept at a minimum in order to make
the service easy to use. This can be achieved by never showing the ciphertexts
to the user and implementing a user-friendly key management scheme.

Data integrity. The integrity of file content should be protected. Clients should
be able to verify that an authorized client submitted the file content which
they receive from the server and that the content was not tampered with. The
server should have the possibility to check the integrity of client-supplied file
contents.

Group sharing. It should be possible to share confidential data within groups.
Groups may be dynamic, i.e. members may leave or join a group during its
lifetime. Efficient key management schemes are necessary to provide that
feature.

File synchronization. It should be possible to synchronize files with different de-
vices and users. Synchronization should be as efficient as possible, i.e. require
minimal user interaction and keep the amount of necessary storage space,
computation time, and network traffic as low as possible. The synchroniza-
tion algorithm design needs to take into account that files on the clients are
unencrypted, whereas the files on the server are encrypted.

Live file synchronization. Changes of the client’s file tree should be detected and
synchronized with the server when they occur. This makes data available to
other clients, directly after the data was created.
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File versioning. It is desirable to have access to all versions of files in order to
recover deleted files, see the development of files over time, etc. File versioning
might also contribute to efficient synchronization as changes rather than whole
files can be distributed to clients.

Access control. Access to resources should be controllable. The access control pol-
icy implementation determines how fine-grained access rights are. Access con-
trol is particularly important with respect to group sharing, as groups might
be dynamic. Centralized access control can be provided by the server. Owing
to client-side encryption, access control becomes decentralized, as clients need
to obtain keys in order to decrypt data.

Open protocols. The communication protocols should be open in order to enable
developers to program their own client or server. While a closed source client
and server from a third party might contain a backdoor, home-brew software
can be built backdoor-free. As, among others, Ken Thompson [Tho84] and the
case of the potential backdoor in OpenBSD [Tho10] showed, even open source
software is prone to backdoors. Additionally, open protocols enable developers
to extend the protocol and the functionality.

Changeable algorithms. Users should have the possibility to change the encryp-
tion and integrity protection algorithms. Thus, users are able to decide on the
strength and other cryptographic parameters on their own.

Usability. The service should be easy to use. Therefore synchronization should be
done in the background, i.e. without user intervention. It should be simple to
provide keys and to share files. An intuitive Graphical User Interface (GUI)
and console interface should be provided.

Portability. All parts of the software should be portable among different operating
systems. This can be achieved by using a cross-platform compatible program-
ming language such as Java and making the software compatible with standard
file systems.

In the following, we outline features which a network storage system might provide,
but which were neither integrated into the design nor into the implementation.
However, Section 5.4 suggests extensions for our service.

File name confidentiality. Although our service provides file content confiden-
tiality, we do not encrypt file names. The reasons for this decision are given
in Section 3.6.1.

Random file access. Our service provides random access to server files. However,
since files on the server might be diffs or encrypted with arbitrary cipher
modes, we cannot always randomly access plaintext bytes of entire logical files
(cf. Section 3.8.2).

Intrusion protection. The associated risks of a client or server attack should be
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reduced. Trusted Platform Modules (TPMs) could be used to protect the key
material on the client.

Searching. Functionality which allows clients to search for file names in the server’s
history could be implemented, assuming that file names are unencrypted. File
content search on the server-side can only be provided for unencrypted files.

Quotas. A desirable feature is to limit the storage space, network traffic, and con-
nection time on a per-user basis. Moreover, quota could be allocated per
group.

Data compression. File content compression could be provided by the software
(cf. Section 5.4). However, ciphertext compression is unlikely to reduce the file
size significantly, as ciphertexts typically possess a high information entropy.
Therefore it is recommendable to compress files prior to encryption. Some file
systems provide compression.

Data redundancy. Data redundancy increases data availability. The client or
server could make use of error-correcting codes for this purpose (cf. Sec-
tion 5.4). Moreover, data could be stored redundantly with a RAID.

Deduplication. De-duplication on the server-side allows to save storage space.
However, file deduplication becomes difficult when users employ cipher modes
of operations which rely on a random initialization vector (IV). For example,
CBC (Cipher Block Chaining) is such a mode. Encrypting identical plaintexts
using different IVs, results in different ciphertexts. The software or the file
system could take care of deduplication.

File links. A file link is a reference to an actual file. File links could be supported
by the file system. Moreover, it is possible to implement logical file links into
the software (cf. Section 5.4).

3.4 Client and Server Interaction

This section deals with interactions between clients and the server. Section 3.4.1
provides a general overview of the interactions. Section 3.4.2 explains how clients
authenticates themselves towards the server.

3.4.1 General Overview

Our service has a single, central server that stores data. Multiple clients connect
to the server and synchronize files which users save in a directory that we call the
working directory (cf. Section 3.7). Users may synchronize their files with multiple
devices and share folders in dynamic groups. In order to synchronize files, clients
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connect to the server, authenticate themselves, and retrieve possible file changes
from the server. Afterwards, clients submit their own working directory changes
to the server (cf. Section 3.8.1). Clients typically connect to the server over the
Internet, although the clients and server might be in the same LAN (Local Area
Network) as well. Figure 3.1 illustrates the architecture of our service. Note that it
only visualizes the most fundamental components.

Figure 3.1: Architecture of our secure network storage service.

A daemon on the client computer takes care of synchronizing the user’s data with
the server. W. Richard Stevens defines the term daemon as “a process that executes
’in the background’ (i.e., without an associated terminal or login shell) either wait-
ing for some event to occur, or waiting to perform some specified task on a periodic
basis” [Ste90]. This definition matches our notion of a daemon: The daemon runs in
the background without user intervention and synchronizes the user’s data periodi-
cally. The daemon also waits for changes of working directory files and synchronizes
detected changes to the server immediately. The working directory contains the file
keys as well (cf. Section 3.6.3).

Since the client daemon adheres to existing client file systems, users may access
their files directly. However, if our service was integrated into a file system, users
would have to attach the file system to their operating system prior to accessing any
files. Furthermore, we would need to port the file system to the user’s operating
system. An advantage of integrating a storage service into a file system is that the
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corresponding software sees file changes on a low level when they are made. This
facilitates file synchronization. In contrast, we gain cross-platform compatibility
by layering our service on top of existing file systems. In addition, users have the
possibility to employ their preferred client file system which offers desired features.
For example, the file system could implement redundancy measures.

Interactions obey to the standard three-tier client and server model [Ree00]. In a
three-tier architecture multiple clients request data from and submit data to the
server. Our server application processes client data on the server machine and saves
files in a folder on the server’s file system. We call the folder on the server which
contains the client-supplied files the server file tree (cf. Section 3.5). The server
keeps metadata and further higher-level data in a database (cf. Section 4.4.3). The
clients are unable to determine how data is stored on the server, as they use a
higher-level protocol (cf. Section 3.11) to communicate with the server. The server
is able to change its business logic, while still providing its services to clients, if the
fixed presentation tier (the protocol) remained unchanged. Moreover, the data tier
on the server may be changed without affecting the business logic tier of the server
(cf. Section 4.4.3). Clients do not need to adapt to the server’s internal changes.

All connections between the client and server are secured with the Transport Layer
Security (TLS) protocol [T. 08]. As TLS is built on top of the Transmission Con-
trol Protocol (TCP) [Pos81], TLS shares TCP’s properties such as reliable data
transmission, error detection, flow control, and congestion control. Additionally,
TLS provides connection security with the properties privacy and reliability [T. 08].
Privacy is provided by data encryption using symmetric cryptography. Checking
the integrity of messages using a keyed MAC makes the connection reliable. The
TLS Handshake Protocol allows the server to authenticate itself towards the clients
as well as to securely and reliably negotiate a shared secret [T. 08]. Although the
TLS Handshake Protocol also enables clients to authenticate themselves towards
the server, we take the approach described in Section 3.4.2 for the sake of user-
friendliness.

Rather than relying on a Public Key Infrastructure (PKI) [NIS09], we embed the
server’s public key into the client program. Web browser suppliers also employ this
both effective and simple approach, by integrating trust lists (lists of trust anchors
which in turn combine a public key and the name of the entity possessing the
corresponding private key) into browsers [Coo05]. However, when the public key of
the server changes, the new public key has to be distributed over a secure channel.
For example, the public key could be released on a web page which the client trusts,
or exchanged over a secure out-of-bound channel.
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3.4.2 Authentication

Secure authentication can be realized using symmetric or asymmetric cryptography.
In both cases, a challenge-response protocol may handle the authentication process.
With symmetric cryptography, the client and the server share the same key, whereas
with asymmetric cryptography, the client stores a public and private key, while the
server only possesses the client’s public key. An advantage of challenge-response
authentication using symmetric cryptography over asymmetric cryptography is that
users may select passwords which they can memorize. Moreover, symmetric-key en-
cryption algorithms are typically significantly faster than public-key (asymmetric)
encryption schemes [MVO96]. However, if the user picks a weak symmetric key, the
security of the service is at stake. On the contrary, asymmetric key pair generators
are supposed to produce strong keys in any instance. Furthermore, if an attacker
obtained access to the server and asymmetric cryptography is deployed, she could
only steal the public key, but not the private key which is crucial for authentication.
We gain the same benefit using symmetric cryptography, if the server stored a cryp-
tographic hash rather than the cleartext of the symmetric key. An example for an
authentication protocol which is based on symmetric cryptography is the Kerberos
protocol [Neu05]. The PPP EAP DSS Public Key Authentication Protocol [Wil97]
is an authentication protocol using asymmetric cryptography.

The PPP CHAP (Challenge Handshake Authentication Protocol) [W. 96] is a flex-
ible protocol for two-party authentication. A drawback of CHAP is that it requires
the server to store the secret in cleartext. This should be avoided, since we do not
ultimately trust the server. Merely reading the secret from the server storage is
enough to break the security.

With TLS, the simplest form of password authentication could be used instead, while
still foiling eavesdropping attempts: Clients send their passwords in cleartext to the
server over the secure TLS connection. Instead of saving the password in cleartext
on the server, the server can store a derived key. On the client-side, the password
is saved in cleartext which is conform to our security classification (cf. Section 3.2).
RFC 2898 [B. 00] deals with password-based cryptography and presents a method
to derive pseudo-random keys from a password. The presented function PBKDF2
takes a password, a salt (random byte string), an iteration count, as well as the
intended output length in bytes and outputs a derived key after a number of steps
determined by the iteration count. During each iteration a pseudorandom function
(PRF) is applied to certain input combinations and intermediate results. The pseu-
dorandom function takes two arguments and can be a keyed HMAC (Hash-based
Message Authentication Code). The default PRF with respect to document [B. 00]
is HMAC-SHA-1 [Kra97]. An increased iteration count increases the cost of pro-
ducing the derived key, while also increasing the difficulty of attacks [B. 00]. In our
authentication scheme, the server stores a random salt and the derived key using
PBKDF2 from the user’s cleartext password in its database (cf. Section 4.4.3). The
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server software defines a constant iteration count and therefore the iteration count is
not stored in the database as well. An opponent who steals the server’s database will
face difficulties to derive the cleartext password from the derived key, the salt, and
the iteration count. Each time a client sends its cleartext password to the server in
order to authenticate itself towards the server, the server applies PBKDF2 to derive
a key and compares the result to the respective key from the database. If the result
and the stored key matched, the server accepts the authentication request from the
client. Otherwise, the server rejects the client’s authentication request. A user name
is also sent by the client in order to allow the server to identify the client.

Note that there are various other authentication schemes such as Lamport’s pass-
word scheme [Lam81] on which S/KEY [Hal95] is based. Another option is to use
the authentication functionality from TLS in order to authenticate clients towards
the server. However, as it is easier for the average human to memorize password
strings rather than strong private keys, we did not employ TLS client authentica-
tion. It goes without saying that the private key could be directly integrated into
the client, but if users had multiple devices, they would need to securely transfer
their private key to all devices. In contrast, a password can be entered on all devices
manually without much effort. Overall, our scheme is both simple and secure.

The server authenticates itself towards the clients using TLS. Our client embeds
the server’s public key in order to be able to check the authenticity of the server.
Moreover, our client aborts server connections when the server does not authenticate
itself.

3.5 Server File Hierarchy

This section discusses how the file hierarchy on the server can be managed. Note
that it is not necessary to manage the file hierarchy on the client. The client daemon
gets a pointer to the folder containing the files to mange from the user. It takes the
structure as is, and does not change it.

On the server-side, files are stored on a persistent storage device sporting a local
or network file system. One of our goals is to make file storage on the server as
flexible as possible. Therefore files may be stored at arbitrary locations on any file
system supported by the operating system. Furthermore, this property facilitates
backing up data, as standard backup tools can be used. The server administrator
determines where the files are supposed to be stored. We could enrich our service
with additional features, by deploying an appropriate file system. For example, we
could choose a file system that automatically mirrors its content into the cloud.

Metadata is stored in a database for the sake of fast-lookup, concurrency, automatic
constraint checking, as well as other features a database provides. In addition, the
business logic of the server checks and processes client input, before any client-
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supplied data is pushed into the database. Files are stored on the file system rather
than in a database owing to the aforementioned advantages.

The server neither deletes nor modifies valid files that had been received from a client
in order to maintain the features data integrity and file versioning (cf. Section 3.3).
A file is valid, if the client-provided checksum matched the checksum of the received
file, and if a corresponding metadata entry existed in the database. The server
neither removes nor changes written metadata entries.

Our server file hierarchy design must support multiple users. Each user has a single
private folder and may manage multiple shared folders. Managing means that the
user takes care of group key management (cf. Section 3.7) and administrates access
permissions of shared folders. We call the user who manages a shared folder the
owner of the folder. The owner of a folder is the only entity with the permission to
create and change the folder’s access rights (cf. Section 3.2.1). Therefore each folder
is associated with a unique owner. The server database stores the access rights of
shared folders (cf. Section 4.4.3).

As the file name provided by the client may originate from different file systems
implementing different naming conventions, names should be converted to a common
representation. Note that if clients encrypted file names, the server would not be
able to transform them. Therefore we convert file names on the client-side only.
The server stores and retrieves names as they were originally supplied by the client.

On the server, files are identified by an owner name, a folder name, and a file name.
Representing file names with the generic URI (Uniform Resource Identifier) syntax
from RFC 3986 [Ber05] resolves the name representation issues outlined above. A
folder name can refer to the private folder of the user or to a shared folder. It only
consists of up to ten lower-case alphanumeric characters for file system compatibility
purposes. In addition, it begins with a letter. The file names clients provide are
relative to the storage folder path on the server. The server maintains a history
(cf. Section 3.8.1) of the client’s changes in its database (cf. Section 4.4.3). The
combination of the user name, the folder name, and the file version serves as a
candidate key for the history table (cf. Section 4.4.3). The version number is a
positive integer that the server manages independently for each user and folder
name combination (cf. Section 3.8.1).

Let us illustrate our server file hierarchy concept with an example. Let f be the path
to the storage folder on the server’s file system where all client files are supposed
to be stored. A server administrator sets the file storage folder in the server’s
configuration file (cf. Section 4.2). Let / be the file path name component separator.
Then the server saves the private file with version number v of a user u under
f/u/private/v. For a shared folder named s, the location of a corresponding file
from user u with version number v on the server’s file system would be f/u/s/v. Note
that the location of a client-supplied file on the server file system merely depends
on the storage folder, the user name, the folder name, and the version number.
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Consequently, the server does not use the file’s name to determine a file’s location.
The server stores file names as metadata in the server database (cf. Section 4.4.3).
A file name may refer to files which are on any level in the client’s file hierarchy.
The only requirement is that file names are relative to the client’s working directory
(cf. Section 3.7).

folder

user1 user2 user3

private shared1 shared2 private shared1 private

1 2 1 1 31 2 4 1 3 1 5

Figure 3.2: Server file tree example.

Figure 3.2 shows an instance of a server file tree. In this example, the storage folder
is named folder and there are three users called user1, user2, and user3. Each
user has at least one private file. User user1 owns two shared folders with the names
shared1 and shared2. User user2 has a shared folder that is also named shared1.

An advantage of our server file hierarchy scheme is that the server’s file system only
needs to support lower-case alphanumeric file names. Another advantage is that the
server file names are short, since the file’s version number is used rather than the
user-supplied file name of almost arbitrary length (the user-supplied file name length
is limited by the message length; cf. Section 4.6). Thus, we support file systems with
high file name length restrictions.

3.6 Keys

This section describes which types of cryptographic keys are used in the service
(Section 3.6.1). Furthermore, it is explained how keys are generated (Section 3.6.2)
and integrated (Section 3.6.3) into the system. Keys are crucial for the security
features client-side encryption and data integrity (cf. Section 3.3) which the system
provides.

3.6.1 Key Types

The server stores a public/private key pair that is used for server-authentication (cf.
Section 3.4.2) and TLS connections (cf. Section 3.4.1). Additionally, the server
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stores derived keys and salts of client passphrases which are needed for client-
authentication (cf. Section 3.4.2). Further keys are not present on the server-side.

On the client-side, there are two types of keys:

Access keys. A client stores symmetric keys for client-side encryption, client-side
decryption, and data integrity (cf. Section 3.3). We call keys that are used for
client-side encryption and decryption content keys. Keys which are associated
with data integrity are named integrity keys. Content and integrity keys are
independent of each other, i.e. content keys are not derived from integrity keys
or vice versa. Moreover, each key is chosen randomly (cf. Section 3.6.2). Access
keys are stored unencrypted in a file called access bundle (cf. Sections 3.7, 4.3).
An access bundle contains a key version number and a cryptography algorithm
name along with each key. For each confidentiality key, an integrity key with
the same version number exists. The inverse is also true, i.e. for each integrity
key, a confidentiality key with the same version number exists. As for content
keys, the algorithm name refers to the name of a symmetric cipher. The name
may contain further details such as the mode of operation or the name of the
padding algorithm to use. As for integrity keys, the algorithm name refers to
the name of a MAC implementation. Access keys must not be handed over to
the server or an untrusted party. However, when cipher modes of operation
which depend on more inputs than a key and plaintext, such as CBC, are used,
the extra inputs may be stored as metadata on the server (cf. Sections 3.11,
4.1.3, 4.4.3).

Authentication credentials. Authentication credentials consist of a username
and password string. The client sends the username and password combi-
nation to the server during client-authentication (cf. Section 3.4.2). Users
store credentials in plaintext in a configuration file (cf. Section 4.2). In order
to register a user on the server, the client needs to submit a PUT auth message
(cf. Section 3.11) to the server. We provide a tool that allows to register and
update user credentials on the server (cf. Section 4.8.1).

As our service does not provide file name confidentiality, there are no keys for this
purpose. A problem is that file name confidentiality prevents the server from check-
ing the validity of client-supplied requests, if the name key changed or if a file name
was encrypted using a cipher mode which relies on random inputs such as an IV. A
client request is valid, if the request is syntactically correct and consistent with the
server history. For example, a syntactically correct file deletion request is valid, if
the corresponding file existed according to the server history. If either a constant
key and no random input or no key were used, the server is able to distinguish
between the operations add and modify on its own, when the client puts a file (PUT
file; cf. Section 3.11) on the server. Moreover, the server can always verify the
parameters of a rename (POST move; cf. Section 3.11), or delete (DELETE file; cf.
Section 3.11) request. It is important that the server checks the validity of requests,
as otherwise a client could render the server history inconsistent (cf. Section 3.10.1).
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However, having only a single key in order to let the server check the validity of re-
quests, interferes with the concept of lazy revocation (cf. Section 3.7.4). To provide
both file name confidentiality and server checks, all file names in the history (cf.
Sections 3.8.1, 4.4.3) could re-encrypted with an undisclosed key by a client that
possesses all file name keys. Re-encrypting involves decrypting file names which
are encrypted with an old key and encrypting them with the new key. However,
this approach is inefficient and does not honor lazy revocation. Section 5.4 outlines
another way to integrate file name confidentiality into our design.

3.6.2 Key Generation

The tool from Section 4.8.2 is able to produce random keys. Users must provide
the tool with their desired key length in bits. The tool lets the most preferred,
cryptographically strong random number generator (RNG) of the system generate
the random bits of the key.

An advantage of automatic, cryptographically strong, random key generation is
that the resulting keys are unguessable and truly random [Eas05]. Furthermore,
automatic generation is convenient and prevents users from picking weak keys and
providing keys in the wrong format (encoding, length, etc.). Additionally, users
usually do not know their keys by heart, as they possibly have not even seen them.
This circumstance could foil social engineering attempts.

The key length is a significant parameter, as the security of the cryptographic sys-
tem depends on it. There are various public and private organizations which rec-
ommend different minimum key lengths, even for the same cryptographic system.
Page [Dam12] summarizes the reports from several organizations and implements
mathematical formulas which allow visitors to quickly evaluate the minimum rec-
ommended key length for their systems. The access bundle tool from Section 4.8.2
provides recommendations for cipher and MAC algorithms whose key lengths fulfill
the proposals from page [Dam12]. However, users may choose arbitrary algorithms.

Note that another idea which was considered but discarded during the design phase,
is to have master keys, i.e. keys from which other keys are derived. Deriving a key
from the master key could be achieved by padding the master key with constant
strings and hashing the result with a cryptographic hash function. The advantage is
that less keys need to be stored and distributed. Moreover, since the output of the
cryptographic hash function is pseudo-random, derived keys are also pseudo-random.
The master key cannot be deduced from the derived key, since a cryptographic hash-
function is one-way. However, this approach has several disadvantages: In order to
obtain a pseudo-random key this way, an appropriate cryptographic hash function
has to be chosen. If attacks on the hash function emerge, the security of the system
will be at stake. For example, if preimage resistance is broken, an attacker who
knows a derived key can produce the master key and consequently any other derived
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key. Moreover, the output length of the hash function must be greater than or equal
to the desired key length. The input length of the hash function, i.e. the length of the
master key, must be sufficiently long as well in order to generate strong keys [Kra97].
As users may specify the length of derived keys, a hash function cannot be chosen
and integrated in advance. Moreover, users may demand different key lengths, as
they may specify arbitrary cipher and MAC algorithms (cf. Section 4.1.3). Since
security is a top priority, users may and should generate each key independently
from other keys.

In contrast to access keys, we do not automatically produce authentication cre-
dentials (cf. Section 3.4.2). User pick credentials themselves and set them in a
configuration file (cf. Section 4.2). Therefore, users are able to choose a password
that they can remember, although their selected password might be guessable.

3.6.3 Key Integration

This section explains how keys are integrated in the system. All access keys are
stored only on the client-side in files named access bundles (cf. Sections 3.7, 4.3).
There may be a single private access bundle containing the keys for the private files
of a user. The private access bundle is only present on the clients belonging to the
corresponding user. Additionally, a group access bundle per shared folder and per
client must exist. The keys in access bundles serve to provide client-side encryption
as well as decryption and data integrity. The members of a group have identical
access bundles which they use to access their commonly shared folder. If each key
was generated independently, attackers are unable to deduce unknown keys from
leaked keys.

Authentication credentials are stored in the user’s configuration file (cf. Section 4.2),
while the server stores a username, a derived key of the password, and a salt per
user (cf. Section 3.4.2). The server’s public key is embedded into the clients in order
to be able to check the server certificate (cf. Section 3.4.2). The server’s private key
is only present at the server.

3.7 Key Management

Group keys are a set of content and integrity keys (cf. Section 3.6.1) that group
members possess. To provide file sharing among group members, group keys need
to be managed. We consider dynamic groups, i.e. members can join and leave the
group during its lifetime. As members of a group may still possess the keys of
their group when they leave, the group needs to create a new key and distribute
it among the current members. When a member joins a group, it needs to get
keys from the group. Group key management research addresses these problems by
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proposing rekeying schemes for dynamic group memberships [JA03]. Moreover, as
there may be several shared folders in the user’s file hierarchy, a scheme to manage
the keys for the hierarchy itself is required. Section 2.2 presents related group
key management work, while Section 2.3 deals with related work concerning key
management for access hierarchies. Although the related work influenced the design
of our key management scheme, we pursuit a novel approach which we present and
discuss in Section 3.7.1. Sections 3.7.2 and 3.7.3 describe how we manage content and
integrity keys, respectively. Key update algorithms are discussed in Section 3.7.4.

3.7.1 General Overview

One of the design goals of our service is simplicity which makes the workings of our
service transparent to the user (cf. Chapter 1). We aim to reach this goal through
a straightforward key management scheme.

As for group key management, our system stores group keys in access bundles on
the client-side (cf. Section 4.3). In order to provide key distribution, the system
does neither rely on an architecture such as the Multicast Security (MSEC) Group
Key Management Architecture (cf. Section 2.2) nor on a central, group database
server as Cepheus (cf. Section 2.2) does. Instead, we adopt the approach from Chefs
and Plutus (cf. Section 2.2), i.e. we let the resource owner distribute group keys
over a secure, out-of-bound channel. The owner could, for instance, send the keys
to the group members wrapped in encrypted e-mail messages or hand them over in
person on a digital medium. However, users may transfer their private access bundle
to other devices they possess, but must not pass it to other persons, since private
access bundles contain keys for unshared files. As a consequence, we keep group key
management transparent and avoid a single point of failure.

We built a tool (cf. Section 4.8.3) which allows to create shared folders on the server-
side. Furthermore, our tool may be used to change access rights of a shared folder
any time. Access rights are the combination of user names and permissions for each
user. The server stores and enforces access rights. The supported permissions are
read-only, read/history and read/write/history. History refers to read-only access
to the server’s synchronization history (cf. Section 3.8). Read-only access enables
users holding that permission to download files from the server, but not to view the
history. Therefore a user with read-only permissions needs to get pointers to files
from a person who is eligible to view the history, in order to download the files. The
owner of the shared folder is the only person which has the permission to modify
access rights. Thus, other members of a group cannot interfere and change access
rights without the permission of the owner. Consequently, group members are not
able to revoke the owner. Furthermore, the owner of a folder possesses all access
rights for the folder at all times. Only authorized clients are allowed to set access
rights for folders they own. A dummy access right named public allows public file
sharing. Any user may read the files and view the history of a folder that possesses
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the public access right. Having only a single group member managing access rights
prevents coordination problems, as only the owner produces keys, distributes them,
grants and revokes member access.

Thesis [Fu05] distinguishes between the terms group member eviction and group
member revocation. While an eviction prevents former members from accessing
future content but not past content, a revocation prevents former members from
accessing both past and future content. Our system supports member evictions,
as owners of shared folders create and distribute a new key to the current group
members, after a group member had left. Owners also command the server to
deprive evicted members from access rights. Consequently, former members are
unable to access content after their eviction. Strict revocation requires re-encrypting
past content with a new key. However, as this causes a lot of overhead and former
members possibly have a copy of the plaintext, past content stays on the server
as is. Owners are able to prevent former members from viewing past content on
the server by depriving them from their access rights on the server. However, this
measure cannot stop former members from colluding with the server and thereby
gaining access to past content despite missing access rights (cf. Section 5.3). When
a member joins a group, the owner sends her the access bundle over a secure, out-
of-bound channel. The sent access bundle must include the current key and may
include former keys, depending on whether the new member is allowed to access
past content.

When a user authenticates itself towards the server or creates an account on the
server, the client sends the user-specified cleartext password to the server over a
secure channel (cf. Section 3.4.2). The server stores only the derived key of the
cleartext password in its database. Neither the server nor the user are permitted to
distribute the password. Otherwise, offenders might spoof the identity of the user,
thereby gaining all privileges of the user.

Key management schemes for access hierarchies such as the ones discussed in Sec-
tion 2.3 are flexible and support complex hierarchies which may become opaque to
the managing user. In contrast, we propose a simple folder hierarchy structure. Let
w be the folder on the client machine that contains the files to synchronize with
the server. We call w the working directory. All files which are directly located
under w are private. Moreover, only direct sub-folders, i.e. folders f with the posi-
tion w/f on the file system, can be shared. The folder hierarchy may be arbitrarily
deep. If the private access bundle, i.e. the access bundle for private files which is
located directly under w, does not exist, private files are not synchronized. This be-
havior prevents users from accidentally uploading files in plaintext over the secure
connection. However, shared folders which must also contain an access bundle are
synchronized regardless of the existence of the private access bundle. Users must
put a group access bundle inside shared folders to share the content. Access bundle
declare keys as well as the confidentiality and integrity algorithms to use along with
them (cf. Section 4.3). If a folder does not contain an access bundle, the client
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daemon will treat it like the private folder. Requiring the presence of a group access
bundle inside shared folders, prevents users from accidentally sharing private folders.
The client daemon does not transmit any content of access bundles to the server.

3.7.2 Content Key Management

Our system supports the concept of lockboxes (cf. Section 2.2), as the cipher algo-
rithm implementation (cf. Section 4.1.3) is exchangeable. The server offers clients
the possibility to store and later retrieve arbitrary information about a file through
a metadata field named extra (cf. Sections 3.11, 4.4.3). The cipher algorithm imple-
mentation could use the extra field for the content of the lockbox. The lockbox may
be encrypted with the content key and contain a random key for the corresponding
file. As the content key is symmetric, only one lockbox per file is necessary and
therefore schemes such as NNL (cf. Section 2.2) do not apply to our situation. Fur-
thermore, the system supports cipher modes which depend on random input such
as CBC through the extra field, since cipher algorithm implementations can store
the random input under extra. The system supports filegroups (cf. Section 2.2),
as an access bundle belongs to a folder and henceforth the keys inside an access
bundle may be used for multiple files. We discuss the default cipher algorithm
implementation in Section 4.1.3.

3.7.3 Integrity Key Management

Data integrity is supported by the system with the aid of an exchangeable integrity
algorithm. For example, the default integrity algorithm implementation (cf. Sec-
tion 4.1.3) protects certain metadata fields of files by computing a MAC using the
corresponding integrity key of the client’s access bundle. The integrity protected
metadata of a file includes a cryptographic hash of the possibly encrypted file and
further metadata fields (cf. Section 3.2). The client-supplied MAC values become
part of the file’s metadata on the server in a column called mac (cf. Sections 3.11,
4.4.3). The server compares the hash of received data to the hash value of the
metadata, and accepts the file only if the hashes matched. As the server would
potentially need to be adapted in order to implement a custom, user-supplied hash
algorithm, the hash algorithm is fixed. Clients check the integrity of metadata be-
fore they request the actual data from the server. Malicious group members who
have the latest integrity key, are able to generate valid metadata MACs for arbitrary
file content that they submit. However, other group members are unable to identify
the malicious group member, as every group member possesses the same integrity
key that was used to generate the MAC (cf. Section 3.2).

The system basically supports the integration of signature algorithms. When a
signature scheme is employed, each user would create an asymmetric key pair. While
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the private key must be kept secret, the public key could be stored on the server
and linked with the user name. Clients would create a signature of the protected
metadata using their private key and submit the result to the server. The server is
then able to verify the changes of a client based on the client-supplied signature and
the public key.

An advantage of our MAC-based approach is that it is performant, as symmetric
cryptography is used. Additionally, the approach is simple, since the server does
not need to manage public keys. A disadvantage is that the server cannot ver-
ify the integrity of protected metadata itself. However, the server does not accept
data from unauthorized clients. Therefore clients need to submit their authentica-
tion credentials over the TLS connection to the server, prior to sending data (cf.
Section 3.4.2).

3.7.4 Key Updates

Key updates are necessary to prevent unauthorized parties from accessing confiden-
tial data after a key leak or a group member eviction. Lazy revocation [KRS+03]
is a concept tied to key updating which is in particular useful when key updates
occur on a regular basis. Lazy revocation delays re-encryption until it cannot be
avoided anymore, i.e. when a file is to be updated. The underlying idea is that re-
voked readers may still have a copy of old content and that therefore lazy revocation
does not severely impair security. However, revoked writers should be deprived from
their access rights on the server immediately. Revoked readers may still have access
to the content they had access to before their revocation, but not to new content,
since new content is encrypted with a new key. A disadvantage of lazy revocation is
that it may result in multiple fragments of files encrypted with different keys. This
complicates access management, as possibly multiple keys are needed per file.

Our system uses the concept of lazy revocation: Whenever a member joins a group,
the owner of the corresponding group folder generates a new key and distributes it
to all group members. Moreover, after a group membership change, existing content
is not re-encrypted, as former members might still possess a copy of the content,
which they had been allowed to access prior to their eviction (cf. Section 3.7.1).

To overcome the issues of having multiple keys per file, paper [KRS+03] introduces
the concept of key rotation. With key rotation, it becomes possible to have a sin-
gle key from which every previous key can be derived. Future keys must not be
derivable from the current key. However, thesis [Fu05] points out that key rotation
suffers from a design flaw: It ensures unpredictability for future keys, but does not
guarantee that future keys look pseudo-random to evicted members. Therefore the-
sis [Fu05] presents a scheme named key regression which serves the same purpose as
key rotation, but provides pseudo-randomness. Thesis [Fu05] introduces the three
key regression schemes KR-SHA1, KR-AES, KR-RSA, and proves their security. Each
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key regression scheme consists of four algorithms: setup, wind, unwind, and key
derivation.

KR-SHA1 is similar to Lamport’s password scheme [Lam81] and uses two distinct
cryptographic hash functions h1 and h2. In the setup phase, the publisher (or the
group manager) hashes a random number x with h1 at first. Then the hash output
is hashed with h1 and the resulting hash output is hashed using h1 again. In order
to get maxwind keys, h1 needs to be applied maxwind − 1 times. The random
number x, the intermediate results, and the last result are indexed in descending
order such that x gets label stmmaxwind, while the last result gets label stm1. At
first, the publisher distributes the member state stm1 to the group members. After
a group member revocation, the publisher releases the next member state stm2 to the
members. In the wind phase, the publisher increments the counter for the number
of released states. The actual key used is the result of applying h2 to the current
member state stmi where i ∈ {1, 2, . . . ,maxwind} (key derivation). A member who
possesses stmi can compute any previous state stmj where j < i by applying i − j

times h1 (unwind operation). Note that computing stmk from stmi where k > i is
infeasible, as h1 is one-way.

The key regression scheme KR-AES works basically as KR-SHA1, but uses h1(x) :=
AESx(0

n) and h2(x) := AESx(1
n) where n is a supported block length in bits and x

is the key input for the AES block cipher [NIS01]. Note that the plaintext is fixed
and that h1 as well as h2 are one-way [Fu05].

KR-RSA uses the RSA cryptosystem [RSA78] to provide key regression. In the setup
phase, the publisher creates an RSA key pair, distributes the public key, and keeps
the private key secret. In the wind phase, the publisher encrypts the current member
state with the private key. Initially, a random member state is created by the
publisher and distributed to the group members. In order to unwind a member
state, i.e. derive the previous member state, a group member encrypts the member
state with the public key. By applying a cryptographic hash function to a member
state, the actual key is derived. In contrast to KR-SHA1 and KR-AES, the number of
times the wind procedure of KR-RSA can be invoked, is practically infinite. However,
as the underlying group of the RSA algorithm is finite, the member states cycle.

Our system does not adopt key regression, although KR-RSA requires only constant
key storage space. Instead, we store every single version of a key in an access
bundle that the owner distributes over a secure, out-of-band channel. Therefore the
key storage space that our service requires grows linearly with the number of keys.
Although our approach demands more transmission and storage overhead than key
regression, the computation overhead is lower, as all keys can be directly retrieved
from the access bundle and do not need to be derived. Moreover, the key distributor
(the owner of a shared folder) can select past keys which she wants to distribute to
a new member. The distributor is therefore able to restrict access to past content.
This is impossible using key regression, since then all past keys can be derived from
the current key.
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3.8 File Synchronization

This section deals with file synchronization, i.e. it explains how the server handles
updates of files from the working directory of a client and vice versa. Section 3.8.1
outlines possible file synchronization methods and explains our concept. Methods
for computing file differences are discussed Section 3.8.2. Section 3.8.3 explains how
the system handles synchronization for a general scenario, thereby discussing how
the system deals with conflicts.

3.8.1 General Concept

As our system should support file versioning, we record changes unlike rsync (cf.
Section 2.4) in order to be able to revert to previous file versions. Furthermore, this
enables us to incrementally update clients. In addition, our approach is simpler than
Subversion’s bubble-up method (cf. Section 2.4): Instead of storing trees reflecting
the state of a folder hierarchy at a revision, we use a log of changes. A change
can be an add, delete, modify, or rename action. We call the log of changes on the
server a history. Each log entry contains a version number, i.e. a positive integer.
The first change gets version number 1, while the version number is incremented
by 1 with each subsequent change. The server takes care of numbering and since a
folder name belongs to a unique owner (cf. Section 3.5), the server manages history
version numbers independently for each owner and folder name combination.

The file version number is identical to the version number in the history. In the
version control system Concurrent Versions System (CVS) [Inc12], however, each
file has its own version number. By using the same version number for files and the
corresponding entry in the history, a happened-before relation for all file events is
established. Moreover, this approach facilitates finding the corresponding history
change for a file and vice versa. Another advantage over dedicated version numbers
per file is that resource renames are easy to handle. For example, let us use a
dedicated version number for each file. Let A, B, and C be files names. Assume that
file A is at revision 1, file B is at revision 100, and file C does not exist. Now rename
file B to C which results in the creation of C with revision 1. Renaming file A to B,
would create revision 2 of file B. However, a revision 2 of file B already exists and
therefore revision 2 of file B became ambiguous, as it refers to two different physical
revisions of a file. If file revision numbers match the corresponding history version
number, a rename will not lead to ambiguous file revisions, as the history version
number is unique for each owner and folder name combination. Consequently, each
file revision number is unique in the folder tree to which the file belongs.

1 void synchron ize ( S t r ing owner , Path f o l d e r , Change [ ] proposedChanges ) {
2 int ve r s i on = readVer s i onF i l e ( owner , f o l d e r ) ;
3 Change [ ] serverChanges = sendGetSync ( owner , f o l d e r , v e r s i on ) ;
4
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5 for ( change : serverChanges ) {
6 boolean su c c e s s = app lyLoca l ly ( change ) ;
7

8 i f ( ! s u c c e s s ) {
9 e r r o r ("Cannot apply server change " + change . t oS t r i ng ( ) ) ;

10 return ;
11 }
12 }
13

14 commit ( proposedChanges , owner , f o l d e r ) ;
15 commitLocalChanges ( owner , f o l d e r ) ;
16 sendPostSyncDone ( ) ;
17 wr i t eVe r s i onF i l e ( owner , f o l d e r ) ;
18 }

Listing 3.1: Client synchronization algorithm in pseudocode.

Listing 3.1 shows our client synchronization algorithm in pseudocode. Each folder of
a client with a different access bundles is synchronized independently, as each access
bundle refers to a different owner and folder name combination (cf. Section 4.3). The
synchronization algorithm updates the files in the working directory and another
directory named the synchronization directory accordingly. The synchronization
directory (cf. Section 4.4.1) contains files that are already synchronized with the
server. Only unencrypted files are saved on the client in order to be able to efficiently
compare the files in the synchronization directory to the files in the working directory.
Clients need to remember their synchronization status, i.e. clients must store which
changes from the server they have already committed locally and which changes
they have submitted themselves. The synchronization status is saved by keeping
the version number of the latest change in a so called version file (cf. Section 4.4.1)
under the synchronization directory. After a successful synchronization, the content
of the synchronization directory matches the content of the working directory apart
from management files such as access bundles and version number files.

Clients synchronize with the server by first reading the current version number from
the version file (cf. Listing 3.1, l. 2). Then clients request (cf. Listing 3.1, l. 3)
and apply the changes from the server’s history which they have not synchronized
yet (cf. Listing 3.1, l. 6), i.e. changes whose version number is larger than the read
version number. If and only if a client has successfully applied all changes from
the server, it checks the validity of the proposed changes and commits the valid
ones (cf. Listing 3.1, l. 14). A proposed change is a change which has already been
carried out in the working directory, but is not synchronized with the server yet.
Proposed changes might, for instance, originate from file system watcher notifica-
tions (cf. Section 4.5.2). They are valid, if they had actually been executed in the
working directory. For instance, a rename change is valid, if the corresponding file
was actually renamed. Regardless of whether the valid proposed changes were suc-
cessfully committed, the client detects and commits its working directory changes
to the server’s history (cf. Listing 3.1, l. 15). Finally, the client notifies the server
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that it finished the synchronization process (cf. Listing 3.1, l. 16), and writes the
current version number into the version file (cf. Listing 3.1, l. 17).

1 void commitLocalChanges ( S t r ing owner , Path f o l d e r ) {
2 SyncCo l l e c t i on syncF i l e s = c o l l e c t S yn cF i l e s ( owner , f o l d e r ) ;
3 Set workFi l e s = co l l e c tWorkF i l e s ( owner , f o l d e r ) ;
4

5 for ( workFi le : workFi l e s ) {
6 syncF i l e = syncF i l e s . get ( workFi le . name) ;
7

8 i f ( ( syncF i l e != null ) && ( workFi le . s i z e == syncF i l e . s i z e )
9 && ( workFi le . checksum == syncF i l e . checksum ) ) {

10 // workFile was not changed

11 s yn cF i l e s . remove ( syncF i l e ) ;
12 } else {
13 // was workFile renamed?

14 boolean renamed = fa l se ;
15 Set renameCandidates = syncF i l e s . get ( workFi le . s i z e ) ;
16

17 for ( renameCandidate : renameCandidates ) {
18 i f ( ! renameCandidate . equa l s ( syncF i l e )
19 && ( workFi le . checksum == renameCandidate . checksum ) ) {
20 commitRename( renameCandidate . name , workFi le . name) ;
21 s yn cF i l e s . remove ( renameCandidate ) ;
22 renamed = true ;
23 break ;
24 }
25 }
26

27 i f ( ! renamed ) {
28 // was workFile modified or added?

29 i f ( syncF i l e != null ) {
30 commitModify ( workFi le ) ;
31 s yn cF i l e s . remove ( syncF i l e ) ;
32 } else {
33 commitAdd( workFi le ) ;
34 }
35 }
36 }
37 }
38

39 // remaining files in syncFiles were deleted

40 for ( syncF i l e : s yn cF i l e s ) {
41 commitDelete ( syncF i l e ) ;
42 }
43 }

Listing 3.2: Client change detection algorithm in pseudocode.

Listing 3.2 shows how clients detect and commit its working directory changes in
pseudocode. Line 15 of Listing 3.1 calls the corresponding procedure. In order
to compare the synchronization directory to the working directory, the client col-
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lects information about the files inside the synchronization directory. The informa-
tion can be represented by a data structure that maintains three hash tables (cf.
SyncCollection in Listing 3.2, l. 2). One hash table could map file paths to file
sizes, while another hash table manages the inverse mapping, i.e. it maps from file
sizes to the corresponding set of file paths. A third hash table could map file paths
to the corresponding file content checksums. As computing file content checksums
is costly, it is advisable to only compute checksums when it is unavoidable. Known
checksums should be put into the third hash table for potential, later retrieval. Al-
ternatively, synchronization file information could be kept in a database. In addition
to the aforementioned information, the client collects a set of path names of all files
inside the working directory.

Changes are detected by comparing each file from the working directory to the files
inside the synchronization directory using our synchronization file information. We
maintain a set of synchronization file paths in a so called synchronization collection
(named syncFiles in Listing 3.2) that we iteratively update. The synchronization
collection may include synchronization file information. For each file in the working
directory, we first check whether it was not changed since the last synchronization (cf.
Listing 3.2, l. 9). This is done by comparing the working file to the synchronization
file with the same name, given that the synchronization file exists. If it is unchanged,
i.e. the sizes and checksums of the working and synchronization file match, we will
remove the synchronization file from the synchronization collection. In this case, we
continue with the next iteration, i.e. we consider the next working file. Otherwise,
we check whether the working file was renamed by comparing its checksum to the
checksums of synchronization files whose size equals the size of the working file (cf.
Listing 3.2, ll. 14-25). If a matching synchronization file is found, we remove it from
the synchronization collection and continue with the next iteration. If the working
file had not been renamed, the working file was either added or modified. The
working file was modified, if a synchronization file with the same name exists (cf.
Listing 3.2, l. 30). In this case, we remove it from the synchronization collection
and iterate. Otherwise, the working file was added since the last synchronization
(cf. Listing 3.2, l. 33). Files which remain in the synchronization collection, after
the change status of every working file had been identified, were removed from the
working directory (cf. Listing 3.2, l. 41). The client commits each detected change to
the server, when it becomes aware of it. The server verifies each commit by checking
whether the change is consistent with the existing server history. The client updates
the synchronization directory accordingly, if the server accepted the commit.

3.8.2 File Differences

When a file is modified at the client, the changes are transmitted to the server during
the next synchronization phase and appended to the history. If only a fraction of
the file is modified, transferring just the changes from the client to the server can
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decrease the network and server storage usage. We call a data structure which
represents the differences between two files a diff or delta. Applying a diff between
file A and file B to file A outputs file B.

One approach to integrate diffs in our system is to compute diffs between ciphertexts.
However, the user only works with plaintexts and therefore ciphertexts would either
need to be stored or computed on demand. By plaintext we mean unencrypted data
of any kind. Moreover, if the user chose a cipher mode with the property that a
plaintext change possibly leads to a larger ciphertext change, we might get a large
ciphertext diff despite a small plaintext modification. Computing diffs between two
plaintext file versions does not come along with these overheads and therefore our
system diffs plaintext files of any kind. As diffs are computed and applied on the
client-side only, the server does not bear any computational costs due to diffs. A
disadvantage is that random access is only supported for files which are available
in its entirety on the server, since the server is unable to apply diffs. In addition,
the files must be present in plaintext or encrypted with cipher modes that allow to
directly decrypt random blocks in order to provide random data access. Moreover,
the server cannot check the validity of the diffs, i.e. it does not know whether client-
supplied diffs can be applied to the corresponding source file.

Diffs are in particular useful when large files change slightly. A suitable diff algorithm
must be able to produce diffs of relatively small size. Additionally, an appropriate
diff algorithm needs to have a low time and space complexity, since the processing
power and memory of a client may be limited. As the users may synchronize arbi-
trary text files, binary files, and other file types, we look for a diff algorithm that is
flexible with respect to input types. Since the user does not view the diffs, the diff
does not need to be human-readable.

Text diff algorithms such as UNIX diffs are appropriate appropriate for text files.
UNIX diff [HM76] is line-based, i.e. it compares lines rather than arbitrary character
sequences. It solves “the longest common subsequence” problem in order to deter-
mine unchanged lines. The generated diff is printable in a human-readable format.
Patches, i.e. files which define how to transform the source file into the target file,
can be applied to files which are similar and not necessarily equal to the source file.

Subversion uses an algorithm named vdelta [Col00, HpVT96] to compute differences.
The vdelta algorithm offers string matching technique which “runs efficiently and
requires minimal main memory” [HpVT96]. It runs over the source as well as target
data, and produces output for the target data only. During a vdelta run, each
sequence is processed from the beginning to the end, thereby building a hash table.
The hash table is keyed with four consecutive bytes of the sequence and maps to
the starting position of the four bytes. The run time is indirectly proportional to
the compressibility of the target data, while the space requirement is proportional
to the size of the diff [HpVT96].

The algorithm rsync [TM96, Tri99] updates a file on one machine in such a way that
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it becomes identical to the file on another machine. The machines are connected
over a low-bandwidth, high-latency, bi-directional communication link. Suppose one
machine has file A and another machine has file B. The algorithm turns file B into
file A. First, B is split into non-overlapping fixed-sized blocks. For each block both
a weak, rolling checksum and a strong checksum are computed. A rolling checksum
maps a byte buffer with n bytes x1, x2, . . . , xn to a value from the checksum space. It
has the property that the checksum for the buffer x2, x3, . . . , xn+1 can be computed
efficiently using x1, xn+1, and the checksum of x1, x2, . . . , xn [TM96]. The checksums
from file B are transmitted to the machine possessing A. File A is sought for blocks
beginning at any offset whose checksums match checksums from file B. The machine
which has file A sends instructions to the other machine, allowing to construct file A
from file B.

The Xdelta algorithm [Mac00, Tri99] is based on rsync, but requires and takes ad-
vantage of the local presence of the files A and B. Xdelta uses just a rolling checksum
and compares the files directly in order to identify match lengths. Its run time as
well as its space complexity is linear with the size of the input files.

The tool BSDiff [Per03] produces very small diffs for executable files. It takes ad-
vantage of the fact that regions in two versions of binary files which correspond to
the same source code region differ at most slightly. Although BSDiff creates signifi-
cantly smaller diffs than Xdelta for some inputs, it is very memory-hungry [Per06a].
Another algorithm by the same author which is able to produce patches of less size
is described in thesis [Per06b]. Google’s Courgette [Ada09] also typically generates
smaller patches than BSDiff. It disassembles the binary source and target files,
adjusts the assembly instructions, and runs BSDiff on the result.

As UNIX diff is not very efficient and is only appropriate for text files, it does
not fit into our system. Although BSDiff and Courgette are very efficient, they
are intended for executables. Since Xdelta outperforms the already efficient rsync
when files are locally available and works for any files, Xdelta is a suitable algorithm
for our system. Vdelta is another appropriate diff algorithm candidate. We chose
Xdelta as the default diff algorithm in our implementation (cf. Section 4.5.3).

3.8.3 Synchronization Process

Assume that user U has a file F in its working directory. When the working directory
is synchronized with the server, the following events might occur with respect to F:

• File F is not present on the server.

– U or another group member has removed an identical F from the server.
Consequently, U’s client daemon removes the file on her machine as well.

– U has not yet uploaded F or F had been moved. U’s client daemon uploads
or moves the file, respectively.
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• File F is present on the server.

– U’s version is newer than the server’s version. U has a plaintext copy of
the file in the server’s version inside the synchronization directory. U’s
client daemon computes a diff between the server’s version file and F, if
desired. Furthermore, the daemon encrypts the diff, if desired, and sends
it to the server.

– U’s version is older than the server’s version. If U’s version was not edited,
U retrieves the diff to the newest version from the server and applies it. If
the server’s version is a complete file rather than a diff, the client daemon
just downloads and saves the server file.

If F is modified, a conflict will occur. Another user or U (on a different
machine) have edited and uploaded the file. The version of F that U has
in its working directory and the latest server version of F are branched.
In order to resolve the conflict, U’s client daemon renames file F. The
new name of F is the old file name plus a suffix containing the current
timestamp and the hint that the file is conflicted. The new name also
includes a number, if the original new name already existed locally. Then
the daemon uploads the renamed file to the server and downloads the
server’s version. As a result, both U’s working directory version of F

and the server version become available on the server. Consequently,
all users that have access to F get the two versions of F after the next
synchronization. Therefore our conflict resolution prevents data loss.

3.9 Concurrency

This section deals with measures to allow concurrent access on the server-side as well
as on the client-side. The measures ensure that the client and server states remain
consistent. Section 3.9.1 explains how concurrent access is handled for client-server
interactions through a network. Section 3.9.2 deals with file locking.

3.9.1 Client-Server Interaction

In order to prevent clients from rendering a server’s synchronization history incon-
sistent, write access to the server’s history of a specific folder is provided exclusively
for a single client at a time. An inconsistent synchronization history prevents clients
from properly synchronizing changes from the server.

Both shared and private folder might be accessed concurrently, since multiple clients
from possibly multiple users might attempt to access a shared folder at the same
time. As a user may have multiple machines running clients which periodically

42



synchronize all folders with the server, private folders might be accessed concurrently
as well.

Locking on Server-Side

In order to keep the server-history consistent, the server allows only one client to
access a specific folder at a time. The server maintains a set of locks to keep track of
the currently accessed folders. As folders are identified by their name and owner’s
name (cf. Section 3.5), a lock is associated with an owner and folder name pair.

Clients can lock a folder only by sending a GET sync request. This prevents clients
from successfully submitting history modifications without a preceding synchroniza-
tion request. However, the server cannot prevent the client from ignoring the server’s
synchronization reply that possibly includes changes. Clients which do not apply
server changes locally, might detect and try to commit changes that are not consis-
tent with the server history. However, the server rejects client commits which would
render the server history inconsistent (cf. Section 3.10.1).

Each client-server connection is associated with at most one lock on the server-side
in order to be able to check whether a lock is held when the server receives a client
message over the connection. The servers releases the possibly held lock when the
connection is closed or when the server receives the message POST sync DONE from
the client.

Only one lock per client-server connection can be set at a time. Multiple concurrent
locks per connection are not supported, as messages cannot be sent concurrently
over the same connection. Therefore clients may synchronize one directory after the
other over the same connection, or establish multiple connections to the server. In
the latter case, the client is able to synchronize different directories concurrently.

When the server receives a modifying request message such as PUT file, POST

move, or DELETE file, the server checks whether the connected client holds the
corresponding lock. For the client messages POST auth, PUT auth, and PUT folder,
folder locking is not necessary. POST auth does not modify any resources on the
server. PUT auth inserts or updates a user account in the server database. We
synchronize PUT auth requests with a dedicated lock rather than a folder lock. PUT
folder creates or updates an entry in the server database. We synchronize PUT

folder requests with another dedicated lock. The server answers read-only requests
such as GET metadata or GET file without checking whether the client has locked
the respective resource.
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Locking on Client-Side

On the client-side, the client daemon implementation must not synchronize the same
folder concurrently. If a client implementation decided to do so regardless, server
locking would prevent concurrent access.

3.9.2 File Access

Concurrent access on a file could result in file data corruption when at least two
processes write the file concurrently. If a process reads from a file, while another
process writes to it, the read data might be corrupted.

Locking on Server-Side

Files are not locked on the server-side, as the same file cannot be written concurrently
by multiple clients, since only one client at a time is allowed to put a file on the
server in the same folder (cf. Section 3.9.1). Moreover, the server does not make files
available, before they were written to the file system and associated metadata was
added to the database. The server neither modifies nor deletes files whose content
and metadata it has successfully written (cf. Section 3.5). In addition, the server
never changes or removes existing history entries. File locking is not required for
concurrent read-only access on the same file from multiple requesters.

Locking on Client-Side

The client daemon locks a working directory file whenever the daemon needs to
access it. For example, in order to detect synchronization changes of a file in the
working directory, the client daemon locks the working directory file with a shared
lock and compares it to files in the synchronization directory. A shared lock prevents
other processes from writing, but not reading the file. When a file in the working
directory needs to be written, the client daemon locks the file with an exclusive
lock in order to prevent other programs from accessing the file. An exclusive lock
prevents other processes from both reading and writing the file.

If a lock cannot be acquired, the synchronization process will abort. The client
daemon does not lock files in the synchronization directory, since only the single
client daemon instance itself may access these files. The user must not run other
programs which tamper with synchronization directory files.

A problem can occur when a write lock is required. In order to obtain a write lock,
one must have a writable channel of the file. In turn, a writable channel requires
that the file exists. Thus, if a file had been renamed or removed, before the write
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lock using the original file name was acquired, a new file with the original file name
is automatically created. The client daemon synchronizes the new, empty file with
the server during the next synchronization, although a user had not created it.

Another problem is that files which are locked, cannot be renamed or deleted, while
the lock is held. Thus, if a process P holds a file lock, it needs to release the lock,
before it is able to delete or rename the file. As P releases the lock, before it deletes
or renames the file, other processes are able to modify the file in between. P does
not know that the file was modified, and therefore just deletes or renames the file,
without synchronizing the change. Consequently, file changes might be lost.

3.10 Robustness

This section explains the measures taken to ensure robustness against message omis-
sions and system crashes. Section 3.10.1 deals with server robustness, whereas Sec-
tion 3.10.2 discusses robustness on the client-side.

3.10.1 Server-Side Robustness

Measures

The server commits only changes to the database, after it had successfully written all
associated files and verified their integrity. When a change cannot be committed to
the database, the server reverts any associated file system changes. These measures
ensure that the database state is consistent with the file system state.

The server checks whether client requests are consistent with the present history,
before the server commits the corresponding entries to the database. If a client re-
quest requires multiple database tables to change, the server will bundle and commit
the changes through a database transaction. The server rolls back the transaction,
if a statement of the transaction had failed (cf. Section 4.4.3).

The server responds to a client request with a SUCCESS message, if and only if
the changes had successfully been stored on the file system and in the database
beforehand. Consequently, the client can tell whether the server had accepted and
successfully executed the change.

Clients and the server exchange messages over a reliable communication channel
(cf. Section 3.4.1). Additionally, the client sends content checksums for every file
it uploads, while the server compares the sent checksum to the checksum of the
received file (cf. Section 3.5). If there is a checksum mismatch, the server rejects the
file from the client.
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The server stores each file which a client had uploaded as a unique physical file.
Therefore the server never overwrites files (cf. Section 3.5).

Crash Handling

A crash on the server-side might lead to an inconsistency between the database
and the file system. As changes to the database are only committed after a file
had successfully been received and integrity checked, files on the file system without
a reference in the database might be present. A recovery tool (cf. Section 4.8.5)
detects these orphaned files and deletes them in order to save storage space.

3.10.2 Client-Side Robustness

Measures

The client checks whether requests were carried out successfully on the server. If the
server had successfully carried out a client request, the server sends a SUCCESS mes-
sage. The client logs failed requests, i.e. requests which do not result in a SUCCESS

response. Moreover, the client does not commit changes which are associated with
a failed request to the synchronization directory. When an error occurs during syn-
chronization, the client daemon aborts synchronization and sets the version number
to the version number of the last successfully executed change. Thus, failed actions
can be repeated during the next synchronization.

The client computes a checksum of the possibly encrypted file and transmits the
checksum to the server in a PUT file request (cf. Section 3.11). This allows the
server to check the integrity of the received file. Moreover, every client that receives
the file from the server can check data integrity as well. By default, the checksum
and other metadata is protected by a MAC (cf. Sections 3.2, 3.11, 4.1.3). If the
data the server sends does not match its checksum, synchronizing changes beyond
this point will not work without user intervention. A user could manually edit the
synchronization version file (cf. Section 3.8.1), in order to skip the synchronization
of the corrupted file and continue the synchronization process.

When the client daemon receives a file from the server, the daemon writes it to the
working directory at first and copies it to the synchronization directory afterwards.
The client daemon copies files that are to be copied to a temporary directory and
renames the temporary file to target file afterwards. If the file stores of the temporary
and the target file differ, the client daemon will copy the source file to a temporary
file in the target directory and then rename the temporary file to the target file.
When the client daemon notices that it had unsuccessfully written the temporary
file, the daemon removes it. The name of the temporary file allows tools to detect
possibly partially written files (cf. Section 4.8).
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The client deletes files which had only been partially written to the synchronization
directory. It deletes files after all associated files had been written in order to prevent
file loss.

It is possible that when server changes are to be applied to the working directory
during synchronization, that there is a conflict between a local file and the server
change (cf. Section 3.8.3). There are four types of conflicts, depending on the server
action to be carried out:

1. The client needs to carry out an add action from the server. If a local file with
the same name already exists, a conflict will occur.

2. The client needs to carry out a modify action from the server. If the local file
was modified as well, that is the local file differs from the respective synchro-
nization file, a conflict will occur.

3. The client needs to carry out a rename change from the server. If the target
file already exists, a conflict will occur.

4. The client needs to carry out a delete change from the server. If the local file
differs from the respective synchronization file, it was modified, and a conflict
will occur.

The client daemon handles conflicts by renaming the conflicted file locally and up-
loading it to the server (cf. Section 3.8.3). The name of the renamed file consists
of the old file name plus an appended string containing a timestamp. The string
also indicates that the file is conflicted and a unique number is added, if multiple
conflicts occurred at the same time. Finally, the client executes the conflicted action
from the server.

Note that after a client had resolved a conflict, the server history might contain
further actions apart from the conflicted file add action which the client has not
synchronized yet. As the server appended the conflicted file add change to its
history, the conflicted change has the highest version number. The client daemon
remembers that it has already executed the conflicted action and does not carry it
out again. If an error occurs during synchronization at a version number that is lower
than the version number of the conflicted file add change, the client will not request
the corresponding conflicted file during the next synchronization, as it is already
present in the synchronization directory. However, the client is unable to check
whether the synchronization and the server file match, as the server does not have a
checksum of the unencrypted file (PUT file does not include such a parameter; cf.
Section 3.11), unless the file is available in plaintext on the server-side. Consequently,
the server file’s metadata and the synchronization file’s metadata alone are not
enough to detect a mismatch. Encrypting the synchronization file and computing the
checksum would enable the client to check whether the server and synchronization
files match, but causes overhead. Moreover, the latter procedure works only for
complete files. Therefore the client daemon assumes that the synchronization and
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server files match which is indeed the case, provided that the synchronization file
had not been tampered with. Consequently, the client daemon does not download
a conflicted file that it had already synchronized. Note that it does not matter
what the user has done with the local copy when the client daemon synchronizes
changes from the server, since the daemon does not synchronize local changes before
all server actions have been executed locally (cf. Section 3.8.1).

Crash Handling

Breaking down the synchronization process, helps to understand the effects of a crash
during synchronization. On the client-side, the synchronization process essentially
consists of two steps (cf. Section 3.8.1):

1. Synchronization and application of changes from the server on the client.

2. Commitment of local changes from the client to the server.

The client continues with the second step, if and only if the first step had success-
fully completed. Actions from step one which were not carried out completely, are
repeated during the next synchronization. Due to a crash, the client might not have
written all changes to the synchronization directory. As the client daemon writes
the version file only after all changes had successfully been written to the synchro-
nization directory (cf. Section 3.8.1), the client will repeat incomplete actions during
the next synchronization.

Partially written regular files cannot be present on the client under normal circum-
stances, as the client daemon writes the file content into a temporary file that it
renames to the target file, if the temporary file had been written successfully. How-
ever, partially written temporary files might exist in the synchronization or working
directory after a crash. This could happen, for example, when the client applies a
diff from the server, writes the result to a temporary file, and crashes, before the
temporary file was completely written. As a result a temporary file is present which
is not supposed to exist. Moreover, when the file system does not support atomic
renames, both the temporary and the target file might be lost. The tool from Sec-
tion 4.8.4 detects partially written files according to their temporary file name and
deletes them.

Suppose that the file system’s move operation is not atomic and that we move a
temporary file to a target file. Then the temporary file as well as the target file could
both be lost after a crash. Only the latter case is problematic. This might result in
a lost synchronization file which is supposed to exist. In turn, this case might lead
to the following problems (note that a consistent server history cannot contain a
subsequent add event, as otherwise the synchronization file would not have existed
in the first place):

• If the client needs to synchronize a modify change from the server and the
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corresponding server file is a diff, the client will neither be able to apply the
diff nor to continue the synchronization process. If the server file was complete,
it is synchronized as usual.

• If the client needs to synchronize a delete change from the server, the daemon
will log this event and abort the synchronization process.

• If the client needs to synchronize a rename change from the server, the daemon
will log this event and abort the synchronization process.

• If no related action is present in the server history, but a working file with the
same name as the missing synchronization file exists, the client will upload the
complete working file in step two. The server considers it a modification, as
the file exists on the server-side. Then possibly storage space on the server is
wasted, as the server will store the whole file rather than a diff.

If a file is present in the synchronization directory, although it is not supposed to
exist, the synchronization daemon submits a DELETE file request, if a file with the
same name is not present in the working directory (cf. Section 3.8.1). However,
if a corresponding working file exists as well and differs from the synchronization
file, the client will commit a modification to the server. If the client submits the
modification as a diff, the server history becomes inconsistent, since no file on which
the diff is based is present on the server.

If a temporary file is present in the working directory, the client will consider the
file to be new. Therefore the client will upload the temporary file in step two.

If both a temporary working directory file and corresponding working file target get
lost when a file is copied to the working directory during synchronization step one,
no data loss will occur, as the step can be repeated. Since the client daemon changes
working directory files, before it updates the synchronization directory, this scenario
has no problematic implications for the synchronization directory.

During synchronization step two, the daemon does not modify files in the working
directory. The client commits only detected working directory changes to the server
and if the server accepts the request, the daemon will update the synchronization
directory accordingly. In this case, the server might carry out a change from the
client, while the server message response is lost. If the client does not receive a
response message, it will not update its synchronization directory. However, when
the client receives a positive response message from the server, it will update its
synchronization directory. When the client crashes during the update process, the
synchronization directory might be in an inconsistent state afterwards. The recovery
script is able to remove any temporary files, but the synchronization directory might
need to be turned into a consistent state manually, when synchronization files are
missing. The list above outlines the implications of missing synchronization files.
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3.11 Protocol

The protocol described in this section allows clients to communicate with the server.
As the protocol is fixed, the business logic of the server can be changed, while still
supporting existing client software (cf. Section 3.4.1). A goal of our communication
protocol is to be open in order to enable developers to build their own client and
server applications, sporting possibly new features. Moreover, an open protocol
allows to implement a trusted, backdoor-free client and server.

The syntax of the protocol messages is similar to the HTTP/1.1 [Fie99] message for-
mat. Therefore implementations can make use of existing HTTP libraries. Further-
more, developers may adapt other HTTP-compatible software such as web browsers,
web servers, and proxies to support our protocol.

The server maintains an authentication state per connection. The authentication
state indicates whether a connected client is authenticated and if it was, as which
user the client was authenticated. Clients use a POST auth message to authenticate
themselves towards the server. When the server receives any message type other than
POST auth, it checks whether the requesting client is authenticated and possesses
the required access rights, before it processes the message. If the client was not
authorized, the server replies with the respective FAIL message. Subsequently, the
server may decide to abort the connection and ban the client.

POST messages are associated with modification and update requests. PUT messages
create or overwrite a resource on the server. Clients and the server delimit messages
with a null byte. The server processes the client request POST auth only, if there
was not any preceding, successful authentication request. The string . denotes the
private folder path. For a more precise description of the syntax and encoding, refer
to Section 4.6, or the implementation.

In the following, we define the syntax and semantics of the protocol. The client
requests are to the left of |, whereas the server response is on the right-hand
side. We mark parameters with ?. Parameter values follow the parameter name
and the symbol =. We mark optional parameters with []. We enclose ac-
tions and remarks within curly braces: { }. For example, the client request GET

sync?folder=c2hhcmVk?version=13 is syntactically correct.

The system supports the following protocol messages:

• GET sync[?owner][?folder][?version] |

– SUCCESS GET sync { followed by synchronization information, i.e. his-
tory tuples ?version?action?object where the version numbers are
greater than the given version. The tuples are sorted in ascending or-
der according to the version. The newline byte as defined in the ASCII
table [Vin69] delimits history tuples. The parameter value of action
is one of A (add), M (modify), R (rename), D (delete). If action is A,
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M, or D, the parameter value of object will be the client-supplied file
name. If action is R, the parameter value of object will consist of the
client-supplied source name followed by an ASCII tab character and the
client-supplied target name. If owner is not specified, the authenticated
user who sent the request will be taken as the owner. The private folder
will be taken as the folder, if folder is unspecified. If version is unspec-
ified, 0 will be used as the parameter value. Note that the combination of
an owner and folder name identifies a folder in the server’s file hierarchy
(cf. Section 3.5). }

– FAIL GET sync { followed by an ASCII-encoded error description. }

• GET metadata[?owner]?folder?file[?version] |

– SUCCESS GET metadata { followed by the meta-
data of the requested file in the form
?version?is diff?size?hash?key version[?extra][?mac]. The
parameter values are sent as provided in the corresponding PUT file

request. If owner is not specified, the authenticated user who sent the
request will be taken as the owner. If version is unspecified, the latest
version will be used as the parameter value. }

– FAIL GET metadata { followed by an ASCII-encoded error description. }

• GET file[?owner]?folder?file[?version][?byte first][?byte last] |

– SUCCESS GET file { followed by a null byte and the requested bytes of
the file. The file may either be a diff or a complete file. If owner is not
specified, the authenticated user who sent the request will be taken as
the owner. The newest file will be sent, if version is not specified. If
byte first is unspecified, 1 will be taken as the value. If byte last is
unspecified, the file size in bytes will be taken as the value. Note that the
client needs to obtain the size of the file beforehand with GET metadata

in order to know when the requested file was completely received. A client
should check the MAC that is contained in the file’s metadata before it
requests the file’s data. }

– FAIL GET file { followed by an ASCII-encoded error description. }

• POST auth?user?password

{ user is the user name and password is the cleartext password } |

– SUCCESS POST auth {, if the given credentials are valid. }

– FAIL POST auth { followed by an ASCII-encoded error description. }

• PUT auth?user?password[?current password]

{ user is the user name and password is the cleartext password to set.
current password is the current password, if a password already existed. } |
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– SUCCESS PUT auth {, if the request was valid. The server creates or
updates the authentication credentials according to the given parameter
values. If authentication credentials exist for the user, the server will have
to verify that the provided current password is correct, before it updates
the authentication credentials. }

– FAIL PUT auth { followed by an ASCII-encoded error description. }

• PUT folder?path[?permissions]?key version

{ The value of path must only consist of at most ten, ASCII-
encoded, lower-case alphanumeric characters. Additionally, the
path value must start with a letter. Permissions have the form
member1:permission/member2:permission where member1 as well as
member2 are user names and permission is one of r (read-only), rh (read
data and history), rwh (read and write data as well as the history). There is
the pre-defined member public which represents any user. If the request is
called on an already existing folder, the access rights are changed according
to given parameters. } |

– SUCCESS PUT folder { The server creates or updates the folder accord-
ing to the given parameter values. The authenticated user is taken as the
owner of the folder. }

– FAIL PUT folder { followed by an ASCII-encoded error description. }

• PUT file[?owner]?folder?file?is diff?size?hash?key version

[?extra][?mac]

{ The value of is diff denotes whether the file is a diff or complete and
must be either true or false. The parameter size reflects the file size
in bytes. The parameter hash represents the cryptographic hash of the
file as sent. The cryptographic hash algorithm must be pre-defined and
supported by the server, in order to enable the server to check the hash of
the received file. mac is the MAC value which can be computed using the
integrity key in version key version as the key, and the concatenation of the
parameter values is diff, size, hash, key version, extra as the input
message. However, a developer may choose a different implementation (cf.
Section 4.1.3). } |

– SUCCESS REQUEST PUT file {, if the request was valid. When the client
receives this message, it directly transmits the file’s bytes to the server.
The server checks the hash of the received byte array and if it matched the
given hash value, the server replies with the message SUCCESS PUT file.
Otherwise, the server sends FAIL PUT file. If owner is not specified, the
authenticated user who sent the request will be taken as the owner. }

– FAIL REQUEST PUT file { followed by an ASCII-encoded error descrip-
tion. }
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• DELETE file[?owner]?folder?file |

– SUCCESS DELETE file {, if the file existed according to the server his-
tory. If owner is not specified, the authenticated user who sent the request
will be taken as the owner. }

– FAIL DELETE file { followed by an ASCII-encoded error description, if
the file to delete does not exist according to the server history. }

• POST move[?owner]?folder?from?to |

– SUCCESS POST move {, if file from exists and file to does not exist ac-
cording to the server history. If owner is not specified, the authenticated
user who sent the request will be taken as the owner. }

– FAIL POST move { followed by an ASCII-encoded error description, if
the request is not in accordance with the server history. }

• POST sync DONE |

{ The server releases any locks held by the client, but does not send a response
message. }
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Chapter 4

Implementation

This chapter outlines the most important parts of the prototype implementation.
The implementation is based on the design from Chapter 3.

Section 4.1 provides an overview of the architecture and outlines how the most im-
portant components interact. Section 4.2 describes how the most significant client
and server configuration options, thereby pointing out some features of the imple-
mentation. Section 4.3 deals with access bundles. An overview of client and server
data storage is provided in Section 4.4. Section 4.5 describes how the implementation
handles files. The topic of Section 4.6 is the network communication between clients
and the server. Finally, this chapter describes the GUI implementation (Section 4.7)
and presents our tools (Section 4.8).

4.1 Architecture

The implementation was realized with Java Standard Edition (SE) 7 [Ora12b]. Fig-
ure 4.1 illustrates how the most significant parts of the implementation interact. On
the server-side, the server application runs in a JVM (Java Virtual Machine). A
JDBC driver connects the server application and the database (cf. Section 4.4.3).
The server stores files directly on the file system in the server file tree (cf. Sec-
tion 4.4.2). The server configuration (cf. Section 4.2) file is fed into the server
application when the server is started. The server tools (cf. Section 4.8) also read
the configuration and interact with the server file tree as well as with the server
database.

The server and clients communicate over a network. Each client has a JVM which
executes the client daemon and possibly tools (cf. Section 4.8). The client daemon
and the tools get a configuration file (cf. Section 4.2) when the user starts them.
They read and write files from the working as well as the synchronization directory
(cf. Section 4.4.1). The working directory contains keys in form of access bundles
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Figure 4.1: Architecture of the implementation.

(cf. Section 4.3). The client daemon notifies a GUI (cf. Section 4.7) when it changes
its status. The functionality of the client daemon is extensible with cryptography
(cf. Section 4.1.3) and diff (cf. Section 4.5.3) algorithm plug-ins. Our client daemon
supports security providers [Ora12a] that are linked to the JVM as well.

A description of all implemented packages is provided in Section 4.1.1. Section 4.1.2
presents an overview of the client-server interaction implementation and explains
significant class interactions on an abstract level with the aid of typical client-server
interaction scenarios. Section 4.1.3 outlines how the client software supplies the
features client-side encryption and data integrity (cf. Section 3.3).

4.1.1 Packages

The program consists of the following packages:

client This package contains the class Client which represents the client daemon.
The class ClientMain starts a client. ClientConnectionHandler takes care
of the network connection and message sending as well as receiving.

client.executors This package contains various client implementations. Their in-
terfaces adhere to the ClientExecutor interface. ClientExecutorFactory

is a factory for client implementation instances. PutAuthExecutor is a tool
implementation that enables users to register and update server accounts (cf.
Section 4.8). The tool implementation PutFolderExecutor allows to create
and update folders on the server (cf. Section 4.8). SynchronizationExecutor
synchronizes the files of a user on a periodic basis and, if desired, com-
mits changes when they are detected (cf. Section 4.5.2). The class
TestExecutor runs the test cases from Section 5.1.1. The client executors
TestPerformanceCommitter and TestPerformanceSyncer carry out the per-
formance tests from Section 5.2.1.
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client.prepare This package reflects the file transmission and reception prepara-
tion implementations on the client-side. PreparationProvider defines the
interface which preparation implementations need to provide. An implemen-
tation defines a conversion routine for files that are to be transmitted to the
server and also declares how the client transforms files that were received
from the server. Therefore an implementation may declare its own client-side
encryption routine. PreparationProviderFactory allows to create prepara-
tion implementation instances. PreparationProviderDefault is the default
preparation implementation whose functionality is discussed in Chapter 3.

client.tools This package contains tools which aid users of our ser-
vice. AccessBundleShell allows to create and update access bundles.
ClientRecovery recovers the client after a crash. PutAuthShell enables users
to register and update user accounts on the server. Users may create and up-
date folders with the tool PutFolderShell. Section 4.8 gives a more detailed
description of the tools.

configuration The package includes the client configuration
ClientConfiguration as well as the server configuration
ServerConfiguration class. Additionally, it contains the abstract ac-
cess bundle description AccessBundle and the concrete owner access bundle
OwnerAccessBundle and group access bundle GroupAccessBundle imple-
mentations. Furthermore, the package provides key (class Key) and server
permission (class Permission) representations.

misc This package contains general, re-usable classes for miscellaneous pur-
poses. The class Coder provides conversion routines for strings and
byte arrays. FileHandler implements methods that deal with files.
JSONPrettyPrintWriter transforms JSON [D. 06] strings to a well-readable
format. Logger allows to convert log messages and to write them to the desired
destinations.

misc.diff This package contains the interface Differ which specifies methods to
compute and apply diffs. DifferXdelta implements these methods using the
Xdelta algorithm. DifferFactory is a factory class which generates Differ
implementation instances.

misc.network This package provides classes which manage network connec-
tions. The class ConnectionHandler offers basic network functionality which
both the client and server need. SecureSocket, SecureFinalSocket, and
SecureSelfHealSocket provide a secure socket implementation (cf. Sec-
tion 4.6).

misc.protocol This package contains classes for protocol message generation and
parsing. ClientProtocol allows to generate client messages from parameter
values and to parse server messages. The class ServerProtocol is used to
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parse client messages and to produce server messages. Data structures repre-
senting message values are defined in the class DataContainers.

server This package package includes the server daemon class Server. ServerMain
allows to create and launch a server instance. ServerConnectionHandler is
used to handle a single client-server connection.

server.crypto This package includes only the class Authentication.
Authentication implements password derivation and credential valida-
tion (cf. Section 3.4.2).

server.database This package contains database-related classes.
DatabaseCreation creates the database tables (cf. Section 4.4.3). The
class DatabaseConnection allows to get a shared as well as dedicated
database connections. All necessary database queries and transactions are
specified in DatabaseQueries.

server.tools This package includes the tool ServerRecovery that is able to recover
the server after a crash. Section 4.8.5 gives a more detailed description of the
tool.

test This package contains test classes. ClientConfigurationTest, CoderTest,
ConfigAndBundleTest, DiffTest, FileHandlerTest, LockTest, and
MiscTest provide unit tests for specific classes as well as functionalities of
the program. The class DatabaseInit creates the database tables and adds
test entries to the tables. InitClientAndServer initializes the database and
the file hierarchy of the client as well as the server for testing purposes.
RandomFileGenerator generates files with random content and is used for the
test from Section 5.2.2. TestCommit, TestConflict, and TestLiveWatcher

are test classes which test synchronization, i.e. the core of the program. An
accurate description of these three test classes can be found in Section 5.1.
TestPerformance runs the performance tests from Section 5.2.1.

view This package provides a GUI implementation through the class
SystemTrayDisplay. Refer to Section 4.7 for a more precise description.

4.1.2 Client-Server Interaction

This section provides a general overview of client-server interactions from a developer
perspective. Moreover, we explain significant class interactions on an abstract level
using two typical scenarios. We also visualize important interactions using Unified
Modeling Language (UML) sequence diagrams.
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General Overview

In the following, we explain how clients connect to the server and authenticate
themselves towards the server from a technical perspective.

First, we start the server by invoking the method start() on a Server instance.
Subsequently, we create a Client instance and invoke start(). This call estab-
lishes a TLS connection between the client and the server. An instance of the class
ClientConnectionHandler represents the connection on the client-side, while the
class ServerConnectionHandler manages the connection on the server-side. The
server spawns a worker thread for each client connection. It maintains a fixed-size
thread pool that handles the connections. The size of the pool, i.e. the maximum
number of threads which may be active at a time, can be set in the server config-
uration (cf. Section 4.2). Our server application degrades gracefully owing to the
fixed-size thread pool [Ora12f].

The server invokes next() on its ServerConnectionHandler instance which blocks
until a complete message from the client is received (next() waits for a mes-
sage delimiter). The Client instance calls authenticate(String, String) on
the ClientConnectionHandler instance in order to authenticate the client towards
the server. When the server receives the authentication request from the client,
it calls handleAuthentication(int) (the parameter denotes the determined mes-
sage length). The aforementioned method checks whether the credentials the client
provided in its message are valid and authorizes the connection, if they were. Sub-
sequently, the server waits for the next client request by calling next(). After the
client is authenticated, it calls execute on an instance of a class which implements
the interface ClientExecutor.

The ClientExecutor instance signals the Client instance that it is done, by yielding
false as the return value of execute. When execute returns false, the client
closes the network connection to the server and invokes join() which waits for the
client thread to finish. When the connection is closed on the server-side, next()
aborts, since the ServerConnectionHandler will not receive messages from the
client anymore. The corresponding worker thread finishes and the server releases
any folder locks which the thread held.

Metadata and File Download

Figure 4.2 visualizes a scenario in which a client gets file metadata and file
content from the server. Refer to the previous section, to get an explana-
tion of the first and last interactions that Figure 4.2 depicts. In this scenario,
the ClientExecutor invokes getFile(GetFileData, Path, Path, Path) on the
ClientConnectionHandler instance in order to get a file from the server. In turn,
the getFile method calls getMetadata(GetMetadataData, Path, Path) that re-
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Figure 4.2: Sequence diagram of a file download.

quests metadata from the server. On the server-side, the next() method detects
the request and calls handleGetMetadata(int) on the ServerConnectionHandler
instance in order to look up and send the corresponding metadata. After the client
had received and verified the MAC of the protected metadata (cf. Sections 3.2, 3.11,
4.1.3), the ClientExecutor implementation instance sends a GET file message to
download the actual file content from the server. The server’s next() method de-
tects the request and calls handleGetFile(int) which transmits the requested file
to the client. Afterwards the server calls next() again, listening for the next client
request.

File Synchronization

Figure 4.3 visualizes a synchronization scenario. Refer to the two previous sections,
to get an explanation of the first and last interactions which Figure 4.3 illustrates.
After the client is authenticated towards the server in Figure 4.3, it calls execute
on a ClientExecutor instance. The ClientExecutor instance could be, for ex-
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ample, an instance of the class SynchronizationExecutor. This instance calls
getSync(GetSyncData, ActionData, Path) on the ClientConnectionHandler

instance which requests history changes from the server (cf. Section 3.8.1). The
server’s next() method detects the request and invokes handleGetSync(int). In
turn, the method handleGetSync(int) searches for the requested history changes
in the database and sends them to the client. The client parses the changes from the
server’s response message. The only change in the response in this example is an add
change. The client calls getSyncAdd(String, Path, Path, ActionData) to han-
dle the change. The change requires getting a file from the server and therefore the
client invokes getFile(GetFileData, Path) to get the metadata and file content
from the server. On the server-side, next() detects the requests and handles them
with handleGetMetadata(int) as well as handleGetFile(int), respectively. After
the client has obtained the file from the server, it synchronizes further changes from
the server. As there are not any unprocessed server changes, the client synchro-
nizes its local changes to the server using getSyncLocal(String, Path, Path).
The synchronization daemon detects that the user had deleted a file in the working
directory and calls deleteFile(String, Path, Path) to inform the server about
the change. The server handles the change with handleDeleteFile(int). This
method appends the delete change to the server history and sends a response to
the client. Since the ClientExecutor instance does not detect any further changes,
it sends a POST sync DONE message to the server. The server handles the client
message with handlePostSyncDone() that releases any locks which are associated
with the client-server connection. Then the server calls next(), awaiting the next
client request.

4.1.3 Client-Side Cryptography

This section describes how the client daemon provides data confidentiality and data
integrity.

Figure 4.4 illustrates the cryptography implementation with a UML class
diagram. The class client.prepare.PreparationProviderDefault re-
flects the default cryptography implementation. It implements the interface
client.prepare.PreparationProvider which specifies the encryption method
Triple <Path, ProtectedData, byte[] >prepareSend(Path file, Key

encryptionKey, Key integrityKey, boolean isDiff) and the decryption
method boolean prepareReceive(InputStream in, ProtectedData data, Key

decryptionKey, Key integrityKey, Path store). The Key data structures
contain the name of the confidentiality or integrity algorithm to use. The default
implementation supports cryptography algorithms for which the Java Virtual
Machine offers a provider (cf. web page [Ora12a]). The user specifies the desired
algorithm name in the access bundles (cf. Section 4.3).

The method prepareSend encrypts the given file using the algorithm and key given
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by encryptionKey. It works with algorithms which make use of an initialization
vector (IV). The method prepareSend generates an IV and uses it to encrypt the file.
It also produces a MAC using the algorithm and key specified by integrityKey. The
input message for the MAC algorithm consists of the concatenation of the metadata
fields is diff, the file size in bytes, the hash of the ciphertext, the key version, and
the IV. The method prepareSend returns the path where the ciphertext is stored,
a data structure containing the file’s metadata, and the MAC.

The method prepareReceive reads data from the given input stream, decrypts the
data, and stores the plaintext under the given name. Note that prepareReceive

does not verify the MAC. Client implementations must request the MAC with a GET
metadata message and verify it, before the implementation requests and decrypts
the file content. However, prepareReceive checks the hash of the received data.
In turn, the message that the MAC protects contains the data hash. The method
prepareReceive returns whether it had successfully received and decrypted the
data.

Developers can implement their own prepareSend and prepareReceive

methods and instantiate their implementation with the factory class
client.prepare.PreparationProviderFactory. Thus, arbitrary cryptographic
algorithms can easily be integrated into the software (cf. Section 5.4).

4.2 Configuration

1 {
2 "root_path" : "files/clients/joe1" ,
3 "user" : "joe1" ,
4 "password" : "joe1-secret" ,
5 "server_host" : "127.0.0.1" ,
6 "server_port" : 54321 ,
7 "server_cert" : "files/clients/joe1/.servercert" ,
8 "server_cert_password" : "cert-secret" ,
9 "sync_path" : "files/clients/joe1/.sync" ,

10 "diff" : true ,
11 "diff_threshold" : 0 . 9 ,
12 "sync_interval" : 180 ,
13 "log_file" : "files/clients/joe1/.log.txt" ,
14 "log_error_file" : "files/clients/joe1/.log.error.txt"

15 }

Listing 4.1: Client configuration example.

Listing 4.1 shows the content of a client configuration example. Client configuration
are written in JavaScript Object Notation (JSON) [D. 06]. The configuration pa-
rameter server cert reflects the path to the server’s public key certificate. Thus,
a client can be directly bundled with a server certificate and the user does not
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need to rely on a PKI. The server certificate must be stored in a JKS (Java Key-
Store) [Ora12c]. The JKS is protected with the password specified by the parameter
server cert password.

The parameter diff threshold determines when diffs rather than complete files
are to be uploaded. The threshold size is the value of diff threshold multiplied
by the file size of the target. If the size of the diff does not exceed the threshold
size, the client will upload the diff rather than the complete file.

The parameter sync interval reflects the periodic synchronization interval in
seconds. The remaining parameters of the client configuration should be self-
explanatory.

1 {
2 "host" : "localhost" ,
3 "port" : 54321 ,
4 "root_path" : "files/server/" ,
5 "database_path" : "files/server/.server.db" ,
6 "keystore_path" : "files/server/SSLKeyStore" ,
7 "keystore_password" : "secret" ,
8 "max_connections" : 300 ,
9 "max_connections_per_address" : 3 ,

10 "connection_timeout" : 10123 ,
11 "max_failed_requests" : 3 ,
12 "block_timeout" : 30123 ,
13 "log_file" : "files/server/.log.txt" ,
14 "log_error_file" : "files/server/.log.error.txt"

15 }

Listing 4.2: Server configuration example.

An example for a server configuration is provided in Listing 4.2. Server config-
urations are, like client configurations, represented in JSON. Clients which send
max failed requests invalid request messages cannot reconnect to the server for
block timeout milliseconds. Furthermore, the server closes the connection over
which the invalid requests were sent. The other parameters of the server configura-
tion should be self-explanatory.

4.3 Access Bundles

This section describes how access bundles are represented. Access bundles are stored
in JSON files under the name .access.

1 {
2 "owner" : "joe1" ,
3 "folder" : "folder1" ,
4 "content_keys" : [
5 {
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6 "version" : 1 ,
7 "algorithm" : "AES\/CBC\/PKCS5Padding" ,
8 "key" : "LRzGvx0fvwAgZVVr5APz_zjZfIVx -ZP7RpHly1w -78E\r\n"
9 }

10 ] ,
11 "integrity_keys" : [
12 {
13 "version" : 1 ,
14 "algorithm" : "HmacSHA256" ,
15 "key" : "fO2d6hRyHIzkwBzTss0lx -v1ke5hS7gqUcyVMdF0cUA\r\n"
16 }
17 ]
18 }

Listing 4.3: Group access bundle example.

Listing 4.3 shows a group access bundle. The parameter owner reflects the
name of the owner of the shared folder. The name of the shared folder on
the server is given by the value of the parameter folder. The parameter
content keys refers to an array of arbitrary many content keys, i.e. the symmetric
keys which are used for file encryptions and decryptions. Analogously, the pa-
rameter integrity keys refers to an array of integrity keys, i.e. the keys used
for MAC computations. The parameter algorithm reflects the algorithm name.
The Java virtual machine must have a security provider [Ora12a] for the algorithm
name or client.prepare.PreparationProviderFactory must know a cryptogra-
phy provider plug-in (cf. Section 4.1.3) which supports the algorithm. The key value
is encoded in URL and filename safe Base64 [Jos03].

A private access bundle looks like a group access bundle, but does not contain the
parameters owner and folder. The owner name of the private folder is determined
by the parameter user in the client configuration (cf. Section 4.2). The folder name
of a private folder is always “.”.

Encryption can be turned off for shared folders, by leaving out both the content
and integrity key arrays in the group access bundle. However, files in the private
folder or in subfolders of the working directory that do not have an access bundle
are always encrypted with the latest content key from the private access bundle.
The client daemon uses the latest integrity key from the private access bundle to
compute the MAC for these files. A private access bundle must be present in the
working directory. Otherwise, the client daemon will refrain from synchronizing any
private files. Users may only share direct subfolders of the working directory. In
order to share a folder, the user must provide a group access bundle for the folder and
specify access rights on the server-side (cf. Section 3.5) with a tool (cf. Section 4.8.3).
These measures protect the user from uploading private files in plaintext as well as
inadvertently sharing files, if the user had forgotten to generate an access bundle.
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4.4 Data Storage

This section describes how files are laid out on the client (Section 4.4.1) and the
server (Section 4.4.2). Section 4.4.3 describes how metadata and other information
is saved in the database.

4.4.1 Client Tree

Suppose that w is the name of the working directory and that s is the name of the
synchronization directory of a client. Section 3.7 outlines the layout of the working
directory, whereas Section 3.8.1 describes the layout of the synchronization directory.

1 w/ . a c c e s s
2 w/ f i l e 1 . txt
3 w/ f i l e 2 . txt
4 w/ subdi r1 / f i l e 1 . txt
5 w/ subdi r1 / f i l e 2 . txt
6 w/ shared1 / . a c c e s s
7 w/ shared1 / . l o ck
8 w/ shared1 / f i l e 1 . txt
9 w/ shared1 / f i l e 2 . txt

10 w/ shared1 / subdi r1 / f i l e 1 . txt

Listing 4.4: Client working directory example.

A working directory w of a client might, for example, look as the one from Listing 4.4.
The private access bundle must be located under w/.access. Folder w/subdir1 is
private, as it does not contain an access bundle. The folder w/shared1 is shared,
as there is a group access bundle w/shared1/.access. Consequently, the client
daemon encrypts all files under w/shared1 with the content key having the highest
version number out of all content keys in the group access bundle. An integrity key
with the same version number as the used content key must exist. The client daemon
uses this integrity key to compute a MAC. An integrity key with a higher version
number than any content key must not exist. Files which are not located under
w/shared1 are considered private, as no group access bundle exists for them. The
client daemon uses the keys from the private access bundle to provide confidentiality
and integrity for these files.

Note that a so called lock file is present under w/shared1/.lock. As this file exists
(existence is enough; content does not matter), the client daemon does not syn-
chronize the folder w/shared1 with the server. When the user is done editing files
in w/shared1, she may delete the lock file in order to enable the synchronization
daemon to commit her changes to the server. A lock file w/.lock would prevent the
client daemon from synchronizing any files.

1 s / . v e r s i on
2 s / f i l e 1 . txt
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3 s / f i l e 2 . txt
4 s / subdi r1 / f i l e 1 . txt
5 s / shared1 / . v e r s i on
6 s / shared1 / f i l e 1 . txt
7 s / shared1 / f i l e 2 . txt
8 s / shared1 / subdi r1 / f i l e 1 . txt
9 s / shared1 / subdi r1 / f i l e 2 . txt

Listing 4.5: Client synchronization directory example.

Listing 4.5 shows an example of a synchronization directory tree which corresponds
to the working directory tree from Listing 4.4. The version file s/.version (cf.
Section 3.8.1) contains the history version number for the private folder. This
version number is used to determine which changes from the server history are
already synchronized and which have to be carried out on the client (cf. Sec-
tion 3.8.1). Analogously, s/shared1/.version contains the version number for
the shared folder shared1. The client daemon compares the files in the working
directory to the files in the synchronization directory and commits changes using
our algorithms from Section 3.8.1. This is separately done for the private folder and
for each shared folder.

Note that all private files from the working directory, except
file subdir1/file2.txt, also exist in the synchronization directory. There-
fore the client daemon might consider w/subdir1/file2.txt to be new. In that
case, the client daemon would upload the file to the server.

Now consider the shared folder shared1. In the synchronization directory, a file
named shared1/subdir1/file2.txt is present. However, there is no file with the
same name in the working directory. Thus, the client daemon might submit a delete
change for shared1/subdir1/file2.txt to the server. Depending on the content
of the files, there might be other changes which the client daemon detects and syn-
chronizes. Moreover, the changes which the client daemon detects might differ from
the changes described here. For example, it is possible that the user had actually
deleted shared1/subdir1/file1.txt and renamed shared1/subdir1/file2.txt

to shared1/subdir1/file1.txt. If that was the case, the client daemon would
detect those changes using our synchronization algorithm (cf. Section 3.8.1).

4.4.2 Server Tree

Section 3.5 describes the design of the server’s file hierarchy. This section outlines
how the server lays out client-provided files with an example.

1 f /u1/ p r i va t e /1
2 f /u1/ p r i va t e /2
3 f /u1/ p r i va t e /4
4 f /u1/ shared1 /1
5 f /u1/ shared1 /3
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6 f /u2/ p r i va t e /1
7 f /u2/ shared1 /1

Listing 4.6: Server file tree example.

Suppose that the server stores files from clients under the folder f. Listing 4.6
shows a possible server tree for this situation. The listing reveals that the server
manages data for two users named u1 and u2. Both users have a shared folder named
shared1. These shared folders are independent of each other. The user u1 made
at least four history changes. The first, second, and fourth change are reflected by
the three files f/u1/private/1, f/u1/private/2, and f/u1/private/4. Note that
change number three was either a delete or rename change, as no corresponding file
exists for the change. By using the history version number as the file name rather
than the user-provided file name, it is avoided that the file name length limit of the
server file system is exceeded. In addition, the user as well as folder names must
consist of pre-defined characters and must not exceed a pre-defined length limit.
The server software ensures that a client cannot access files outside the server tree
using directory traversal attacks. Furthermore, the server makes sure that the client
has permissions to access the requested files.

4.4.3 Server Database

The server keeps file metadata, the history, and further management information in
a relational database. Our implementation stores the data in an SQLite [D. 12]
database, i.e. in a file. The server software uses Java Database Connectivity
(JDBC) technology to access the database in conjunction with an SQLite JDBC
Driver [Xer12]. Therefore the server supports various other database management
systems (DBMSs) for which JDBC drivers exist as well. Switching to another DBMS
requires only minor server software modifications.

The class server.database.DataBaseConnection opens and returns database con-
nections. The server requests a new connection per transaction. Thus, the server
performance might be improved by using a connection pool.

The database stores data in the following tables. The column names should give an
idea of which information the server saves.

users Columns: id, user, salted hash, salt.

folder Columns: id, owner, path, key version, group no.

file Columns: id, owner, folder, name, modified, key version, is diff, hash,
version, size, extra, mac.
The column modified is a server-generated time stamp, reflecting the file’s
creation time. Column version is the history version number that is produced
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by the server. The server adopts the respective client-provided parameter
values from PUT file (cf. Section 3.11).

groups Columns: id, group no, member, permission.

history Columns: id, owner, folder, version, time, action, object1, object2.
The column time is a timestamp based on the server’s clock, reflecting the
time when the corresponding change occurred.

4.5 File Handling

This section highlights some significant aspects about the implementation with re-
spect to files. Section 4.5.1 outlines how the client daemon converts file names.
Section 4.5.2 explains how the client daemon detects file changes in a timely manner
and synchronizes them with the server. Finally, Section 4.5.3 describes file difference
implementations.

4.5.1 File Names

As multiple clients, which probably run on various operating systems, need to sup-
port the file names that other clients provide, clients convert file names to a common
format before they submit them to the server. Therefore the client daemon trans-
forms file names with the URI syntax (cf. Section 3.5) and submits the resulting
name to the server. When a client receives a file name from the server, it converts
the URI back to the original representation. The server does not transform the
client-provided names in any way.

A problem arises when a file has a name which the file system of another client
does not support. For example, UNIX systems use the slash character / as the
file path name component separator, while under Microsoft Windows systems the
backslash character \ serves as the separator. Our client daemon therefore con-
verts backslashes to slashes in every filename sent to the server. Furthermore, file
names may be encoded using different character sets and may contain non-ASCII
characters. Converting the file names according to the URI syntax solves that prob-
lem. Moreover, note that there are case-sensitive file systems such as ext4 [The11]
and case-insensitive file systems such as FAT [Mic12]. A client relying on ext4 can
store files with names a and A in the same folder, whereas a client that stores files
on a FAT-formatted partition cannot store both files in the same directory. Our
implementation does not support the latter case.
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4.5.2 File Change Watching

The client daemon class client.executors.SynchronizationExecutor al-
lows to synchronize changes in the client’s working directory with the
server, directly after they had occurred. In order to detect those
changes, client.executors.SynchronizationExecutor uses Java’s WatchService
API [Ora12g]. While the WatchService implementation tries to take advantage of
the file system’s file change notification service, it polls the file system when a native
file change notification service is not available [Ora12g].

The client daemon monitors the client’s working directory by creating a “watcher”
for it. When the watcher detects a change, the client daemon starts to synchronize
the corresponding folder. Thus, the daemon applies any changes from the server at
first (cf. Section 3.8.1). Then the client daemon checks whether the reported change
had actually been carried out. The daemon commits the change, if the change
was present. Afterwards, the client daemon looks for further changes between the
synchronization and the working directory and submits these changes as well.

Additionally, the client daemon synchronizes files with the server on a periodic basis
(cf. Section 4.2) in order to receive changes which other clients had submitted in a
timely manner. File change watching can also be turned off. When this option is
not used, the client daemon just synchronizes files on a periodic basis.

4.5.3 File Differences

File differences are computed on the client-side only (cf. Section 3.8.2). The client
daemon computes diffs with the Xdelta implementation javaxdelta [gen12]. Xdelta
stores diffs in the GDIFF (Generic Diff Format) file format [Art97]. VCDIFF [Kor02]
is an efficient diff format which is newer than the simple GDIFF format. The
differential patching tool diffable [Jos12] provides a VCDIFF Java implementation,
but works on strings rather than byte arrays. The project j-vcdiff [Dav12] aims to
implement VCDIFF in Java, but was not ready at the time of writing.

Figure 4.5 illustrates our diff implementation with a UML class diagram.
Class misc.diff.DifferXdelta represents the default Xdelta diff implementa-
tion. It adheres to the interface misc.diff.Differ that offers the two meth-
ods Path diff(Path source, Path target) and boolean patch(Path source,

Path delta, Path output). The method diff computes the differences between
a source and a target file and returns the path where it stores the diff. The method
patch applies a diff to a source file and stores the result in a file. It returns whether
the output file was successfully written.

The factory class misc.diff.DifferFactory instantiates misc.diff.Differ im-
plementations. Therefore it is possible to add further diff algorithms to the service
(cf. Section 5.4).
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4.6 Network Communication

The protocol messages (cf. Section 3.11) which the client and server exchange are
encoded in ASCII [Vin69]. Any parameter value strings that do not only consist of
numbers are converted to the URL and filename safe Base64 alphabet [Jos03]. The
Base64 alphabet consists of 64 ASCII characters (hence the name). The advantage
of Base64 is that it allows to represent arbitrary bytes with printable characters
from ASCII. Thus, the client and server may log messages to ASCII files.

Deserializing messages boils down to parsing an ASCII string representing a URL (cf.
Section 3.11) which is easy to do. Although there are more efficient ways to serialize
and deserialize data structures [Goo12, The12], we use the approach outlined here
for the sake of compatibility and simplicity. Additionally, our protocol messages are
printable owing to their ASCII representation which facilitates debugging.

Developers may only access the methods that are associated with the messages
POST auth, PUT auth, PUT folder, GET sync, GET metadata, and GET file (cf.
Section 3.11). Methods which might modify the synchronization history must only
be used after a synchronization request, i.e. within the method that sends GET sync.
Thus, we made those methods private. Class client.ClientConnectionHandler

implements the aforementioned methods.

We synchronize user accessible protocol methods (cf. Section 3.11), in order to pre-
vent that the executions of these methods overlap. However, a developer must not
synchronize the same folder concurrently. If the developer decides to do so regardless,
the server lock management will ensure that only one thread at a time synchronizes
the folder (cf. Section 3.9.1).

The client daemon uses so called self-heal network sockets, i.e. network sockets which
automatically re-connect to the previous destination when the socket connection
aborts (cf. class misc.network.SecureSelfHealSocket). Thus, if a connection to
the server was dropped, before or while the client sends a message, the client will
automatically re-establish a connection. After the connection had been established,
the client sends a PUT auth message (cf. Section 3.11) in order to re-authenticate
itself. In order to re-acquire any previously held locks, the client synchronizes the
respective directory, if applicable. Finally, the client transmits the message which
it originally intended to send. The misc.network.SecureSelfHealSocket class
executes all aforementioned steps. Note that the server uses ordinary rather than
self-heal sockets, since the server must not initiate client-server connections.

The client as well as the server use a message buffer of size 1 MiB (cf. classes
client.ClientConnectionHandler, server.ServerConnectionHandler). The
null byte delimits messages and must fit into the message buffer as well. There-
fore the maximum message length is 220 − 1 characters.
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4.7 Graphical User Interface

The client software is a daemon (cf. Section 3.4.1), i.e. it runs in the background
and does not prompt the user for input. Thus, a graphical user interface which lets
the user control the daemon is not provided. However, the daemon notifies the user
graphically with system tray icons, if they were supported by the operating system.
The GUI is an observer of the client daemon in terms of the observer design pattern.

There are three system tray icons which denote a certain synchronization state. One
of them is a green check symbol that the client daemon shows when the synchroniza-
tion procedure finishes successfully. Another system tray icon showing a red cross
system conveys that synchronization failed. An icon with two white-green arrows
which point in opposite directions indicates that synchronization is in progress.

4.8 Tools

This section describes tools which help users and administrators to manage their net-
work storage systems. The tool from Section 4.8.1 enables users to register accounts
on the server and to update their accounts. Section 4.8.2 presents a tool which is
able to create and update access bundles. The tool described in Section 4.8.3 allows
to manage shared folders. The tools for client and server recovery are presented in
Section 4.8.4 and Section 4.8.5, respectively.

4.8.1 User Registration

The tool client.tools.PutAuthShell enables users to register user accounts on
the server and to update them through a command-line interface (CLI). The user
must specify the desired authentication credentials (cf. Section 3.6.1). If an account
is to be updated, the user has to specify the current password of the account as well.
The tool creates the corresponding PUT auth message (cf. Section 3.11) and sends
it to the server. Finally, the tool displays the server’s response.

4.8.2 Access Bundle Generator

Class client.tools.AccessBundleShell allows the user to generate and update
access bundles through a CLI. The tool is able to generate and update private
access bundles as well as group access bundles. It produces random confidentiality
and integrity keys with the most preferred cryptographically strong random number
generator (RNG). Such a RNG has the properties described on web page [Ora12e].
The user specifies the desired key length in bits or accepts the default. Keys are

70



encoded in URL and filename safe Base64 (cf. Section 4.3). Therefore, the user is
able to define keys manually, if she did not trust in the randomness of the generator.
Section 3.6.2 discusses automatic key generation.

4.8.3 Shared Folder Generator

Users are able to only access shared folders which are registered on the server-
side. The owner of a shared folder is the only group member which has the
access rights to register and update shared folders (cf. Section 3.5). The PUT

folder command (cf. Section 3.11) can create and update shared folders. The
tool client.tools.PutFolderShell offers a CLI which guides the user through
the process of creating and updating shared folders. The user enters the folder’s
name, the minimum allowed key version, and the access permissions for the folder.
The tool creates the corresponding PUT folder message and sends it to the server.
Finally, the tool shows the server’s response. Note that private folders cannot and
must not be registered.

4.8.4 Client Recovery

The tool client.tools.ClientRecovery removes possibly existing temporary files
from the working and synchronization directory of the client. Although the client
daemon deletes temporary files when they are not needed anymore, after a client
crash temporary files might remain in the working or synchronization directory (cf.
Section 3.10.2). As temporary file names have a pre-defined suffix, the tool is able
to identify temporary files by their name. Note that a corrupted synchronization
directory might require manual recovery after a crash (cf. Section 3.10.2). The tool
must only be run when the client daemon is not running, since the client daemon
might access the temporary files. It is recommended to backup the synchronization
and working directory before running the client recovery tool, in order to be able to
recover accidentally deleted files.

4.8.5 Server Recovery

The server references files in the database only after it had checked their integrity.
Thus, files might become orphaned after a crash, i.e. the files exist in the server’s
file directory, but lack a reference in the server database (cf. Section 3.10.1). The
tool server.tools.ServerRecovery deletes orphaned files found in the server’s file
directory. It is recommended to backup the server’s file directory, before running
the server recovery tool, in order to be able to recover accidentally removed files.
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Figure 4.3: Sequence diagram of an example synchronization.
72



 getInstance(String, String): PreparationProvider

PreparationProviderFactory

 prepareReceive(InputStream, ProtectedData, Key, Key, Path): boolean

 prepareSend(Path, Key, Key, boolean): Triple<Path,ProtectedData,byte>

PreparationProvider
«interface»

 PreparationProviderDefault()

 prepareReceive(InputStream, ProtectedData, Key, Key, Path): boolean

 prepareSend(Path, Key, Key, boolean): Triple<Path,ProtectedData,byte>

PreparationProviderDefault

«Implement»

«Import»

«Instantiate»

Figure 4.4: Class diagram of the cryptography implementation.

 getInstance(implementation: DifferImplementation): Differ

XDELTA

DifferImplementation

«enumeration»

DifferFactory

 diff(source: Path, target: Path): Path

 patch(source: Path, delta: Path, output: Path): boolean

Differ

«interface»

 DifferXdelta()

 diff(source: Path, target: Path): Path

 patch(source: Path, delta: Path, output: Path): boolean

DifferXdelta

«Implement»

«Import»

«Instantiate»

Figure 4.5: Class diagram of the diff implementation.
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Chapter 5

Evaluation

In this Chapter we evaluate the implementation presented in Chapter 4. Section 5.1
presents tests which check whether the client and server software work properly. The
performance of the network storage system is evaluated in Section 5.2. We analyze
the attack resistance of our service in Section 5.3. Section 5.4 discusses potential
extensions of the system.

5.1 Functional Tests

All tests in this section were successfully executed on Ubuntu Linux 11.10 as well
as 12.04, Microsoft Windows XP, and Mac OS X Lion. We ran all applications in
the OpenJDK 7u3 [Ora12d] Java runtime environment.

5.1.1 Synchronization Test

In order to verify that the client daemon software is able to properly synchronize file
changes with the server, we designed an appropriate test. Class test.TestCommit
launches our synchronization test. At first, test.TestCommit initializes the
test environments of the clients and the server. The environment includes
the folder tree and, in case of the server, the server database. Then
test.TestCommit starts a server and a client which runs the test executor
class client.executors.TestExecutor. The test executor executes the following
test cases in a working directory:

1. Create the group-shared folder folder1 on the server.

2. Create the publicly shared folder folder2 on the server.

3. Add file file1.txt.
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4. Add file file2.txt.

5. Modify file1.txt in such a way that the complete file rather than a diff to
the previous version is synchronized. In order to ensure that the test executor
synchronizes the complete file rather than a diff, the test executor modifies
file1.txt so heavily that the diff threshold is exceeded (cf. Section 4.2).

6. Rename file1.txt to file3.txt.

7. Delete file3.txt.

8. Rename file2.txt to file1.txt.

9. Add file2.txt.

10. Modify file2.txt slightly, so that a diff to the previous version rather than
the complete file is synchronized.

11. Move file1.txt into sub-folder sub1.

12. Move file2.txt into sub-folder sub1.

13. Rename file2.txt to file3.txt.

14. Modify file3.txt.

15. Rename folder sub1 to sub2.

16. Delete file1.txt.

17. Delete file3.txt.

18. Delete sub2.

19. Add shared1/file1.txt.

20. Modify shared1/file1.txt.

21. Rename shared1/file1.txt to shared1/file2.txt.

22. Move shared1/file2.txt to private directory as file1.txt.

23. Add shared1/file1.txt.

24. Add public1/file1.txt.

25. Add public1/fileÄ.txt.

26. Move public1/fileÄ.txt to fileÖ.txt.

27. Modify public1/fileÖ.txt.

28. Delete public1/fileÖ.txt.

After the execution of each test case, the test executor thread synchronizes the
changes with the server by calling the synchronization method which the client
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daemon uses as well. As the same thread executes the test cases and synchronizes the
changes, it is ensured that test case execution and synchronization are coordinated.
Therefore every single test case result gets committed to the server. After each
commit, the test executor checks whether the resulting version number is correct.
After the test executor has committed all changes to the server, it examines whether
the working directory files which must exist are actually present. In addition, the
test executor verifies that the working directory files which must not exist after the
complete test run, do not exist.

After the test executor had synchronized all changes to the server, a client daemon
synchronizes all changes from the server to an empty client tree. The client daemon
uses the same identity (user name) as the test executor. The purpose of that test
is to check whether the client is able to apply the changes from the server and to
reconstruct the file tree.

Finally, another client daemon synchronizes the contents of the group-shared and
public folder to another, empty file tree. The client daemon authenticates itself
as a group member of the folder1 group. This tests whether group members can
successfully synchronize a shared folder. Moreover, the client daemon synchronizes
the public folder folder2.

The synchronization tests cover all server history change types (cf. Section 3.8) and
all protocol messages from Section 3.11 (except PUT auth that we tested manually;
cf. Section 5.1.4). Furthermore, the test cases involve the private folder, sub-folders,
a group-shared, and a publicly shared folder. Diff creation and application (cf.
Section 4.5.3) is tested as well as non-ASCII file name handling.

We manually verified that the contents of the synchronization and working directory
files are correct. Moreover, we successfully checked the files in the server folder tree
and the entries in the server database by hand.

5.1.2 Watcher Test

The test class named test.TestLiveWatcher tests whether the watcher functional-
ity (cf. Section 4.5.2) of the client daemon works correctly. This test class launches
a server and a client daemon at first. After that we start the test executor thread
which runs the test cases from Section 5.1.1. The client daemon thread synchro-
nizes detected changes to the server. When the test executor and watcher threads
are done, two different client daemons synchronize the changes to their trees, one
after the other, as in Section 5.1.1. In addition, we successfully tested the watcher
functionality manually by carrying out changes in the working directory and observ-
ing the results on the client as well as the server.

When the test executor is faster than the client daemon, i.e. the client daemon
detects a change, after the test executor had already caused further changes, the
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client daemon might “summarize” test case results. For example, if the test executor
deletes a file named A and afterwards creates a file named A, the client daemon might
commit a modification change for file A rather than a delete and add change. Thus,
if the test executor is too fast for the client daemon, the client daemon will not
commit the result of every single test case. Consequently, we would not have tested
the watcher functionality thoroughly.

In order to decrease the likeliness that the client daemon summarizes test cases, we
let the test executor pause after each test case. If the sleep time is long enough,
the client daemon will execute every single test case. By picking an appropriately
low sleep time, the test executor and watcher thread of the client daemon might
concurrently access the same file. This tests file locking in a non-deterministic
manner. We successfully conducted our watcher functionality tests using diverse
sleep times.

5.1.3 Conflict Test

The test cases from Section 5.1.1 do not take conflicts (cf. Section 3.8.3) into account.
However, class test.TestConflict tests conflict handling (cf. Section 3.10.2). It
removes the version file (cf. Section 4.4.1) of the private folder from the synchro-
nization directory and creates files in the working directory which had existed in the
server’s history at some point. When the private folder is synchronized, the client
daemon pulls the complete server history, since no version file is present. As files
that are present in the working directory need to be pulled from the server, conflicts
occur. If two different clients synchronized conflicted files, the same conflict handling
routines that our approach triggers, would be called as well. We successfully checked
the results of the test run manually by examining the server database entries as well
as the folder trees of the client and the server. In order to build an appropriate
server history for the test, we ran test.TestCommit prior to test.TestConflict.

5.1.4 User Registration Test

The test cases from Section 5.1.1 do not cover user registration tests, as
client.Client instances rely on existing user accounts. Instead, we register test
users with our database initialization script test.DatabaseInit prior to running a
test. We successfully tested the user registration and update functionalities manually
using our client.tools.PutAuthShell tool (cf. Section 4.8.1). The corresponding
protocol command is PUT auth (cf. Section 3.11).

77



5.1.5 Folder Test

The first two test cases from Section 5.1.1 address the command PUT folder

(cf. Section 3.11) which is able to create or modify shared folders on the server.
However, the aforementioned test cases cover only the folder creation function-
ality, but not the folder update functionality. Therefore we used the tool
client.tools.PutFolderShell (cf. Section 4.8.3) to extensively test PUT folder

by hand.

5.2 Performance Tests

We evaluated the performance of our secure network storage service in a LAN (Sec-
tion 5.2.1) and over the Internet (Section 5.2.2). We ran the Internet test for Drop-
box as well.

5.2.1 Local Area Network Test

The aim of the LAN performance test is to expose the overhead which cryptographic
and file difference computations cause. In addition, the test yields real world file
synchronization times.

The class test.TestPerformance contains the main class that launches the LAN
performance test on the client-side. We started the server with server.ServerMain

and re-launched the server prior to each test run, in order to initialize the server
database and file tree.

Class test.TestPerformance initializes the client tree and then starts
a client that executes client.executors.TestPerformanceCommitter.
Class client.executors.TestPerformanceCommitter can run in either create-
only or in create-and-modify mode.

In create-only mode, it creates a file in the private folder of a test user.
client.executors.TestPerformanceCommitter calls the synchronization method
that the synchronization daemon uses. The synchronization method encrypts the
private file prior to sending it to the server. The class also generates a file for a
public folder and triggers the client daemon’s plaintext synchronization procedure.

In create-and-modify mode, client.executors.TestPerformanceCommitter cre-
ates files as in create-only mode and synchronizes them using the client daemon’s
synchronization method. It also modifies the files by appending a byte and synchro-
nizes the changes as well. The user may set the file size of the test files.

Class client.executors.TestPerformanceCommitter measures synchronization
times. It uses the system clock’s time with millisecond accuracy for the time mea-
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surements. The class measures the synchronization times of the private and the
public folder separately. It stores the measurement results in a CSV file for later
analysis.

In create-only mode, the synchronization time is the execution time of the client
daemon’s synchronization method. Hence the synchronization time reflects the time
it took to synchronize the changes to the server, i.e. the time to encrypt, integrity-
protect, and send the changes, as well as to update the synchronization folder. Note
that the public file is not encrypted before it is sent to the server. However, the
synchronization time does not include the time to create the test files in the working
directory.

In create-and-modify mode, the client daemon’s synchronization method is called
twice: after the file creation and after the file modification. In that case, the syn-
chronization time is the sum of the two synchronization method execution times.
The synchronization time does not include the times it took to produce and modify
the test files in the working directory.

After client.executors.TestPerformanceCommitter is done,
test.TestPerformance launches another client which synchronizes the pri-
vate and public folder to a fresh client tree. The client calls the executor
client.executors.TestPerformanceSyncer which uses the client daemon’s
synchronization method. The executor measures the synchronization time for the
private as well as the public folder and writes those values into a CSV file. In that
case, the synchronization time includes the time it took to receive the data, check
the integrity of the data, possibly decrypt the data, possibly apply diffs, and to
update the working as well as the synchronization directory.

Each created test file was 100 MB in size. The files were modified by appending a
null byte. Private files were encrypted with AES-256 in CBC mode, whereas public
files were not encrypted. Encrypted, unmodified files had a file size of 100 MB
plus 16 B owing to padding. Plaintext diffs were 15 B large, whereas encrypted
diffs had a size of 16 B. SHA-256 served as the hash function for data content and
HMAC-SHA-256 was used for metadata protection. For public files, data content
was hashed, but a HMAC was not computed. Private file content was hashed and
private file metadata was protected with a HMAC.

Two Dell PowerEdge R415 machines executed the performance tests. One machine
ran the server application, whereas the other one hosted the client. The machines
were connected over a switched Gigabit Ethernet network. Each machine had 16
AMD Opteron 4200 series, model 4280 processors (2.8 GHz), 32 GB RAM, two
Broadcom Corporation NetXtreme II BCM5716 Gigabit Ethernet NICs, and at least
one Western Digital Corporation WD5003ABYX (3.5 in, SATA 3 Gb/s, 500 GB,
7200 RPM) HDD. A Dell PERC H700 controlled four HDDs, forming a RAID 5 set
on the server machine, whereas the client machine had only one HDD. The client and
the server applications ran inside dedicated virtual machines (VMs) on the different
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physical machines. Each VM was equipped with four virtual cores, 4128 MB virtual
RAM, and 16 GB virtual disk space. Debian GNU/Linux squeeze with Linux kernel
version 2.6.32-5-xen-amd64 acted as both the host and guest operating system. Ext3
was used as the root file system and Xen 4.0.1 [Cit12] served as the hypervisor. The
memory-based file system tmpfs [Sny90] managed temporary files. The client and
server application were executed with OpenJDK 7u3 [Ora12d]. The load caused by
other processes was low on both machines during the test runs.

We measured a round-trip time of 0.187 ms between the client and the server VM
using ping. The tool iperf [Gee12a] measured a maximum TCP throughput between
the client VM and the server VM of 943 Mb/s. Using hdparm and dd, we measured
average disk read and write speeds of 407 MB/s and 379 MB/s, respectively, inside
the VMs. Thus, the network connection is the bottleneck in our tests. We conducted
the tests over the Gigabit Ethernet without throttling and also ran the test with a
100 Mb/s bandwidth. The tool trickle [Eri05] limited the bandwidth of the client
and server applications to 100 Mb/s during the throttling experiment. When we
throttled the bandwidth of iperf to 100 Mb/s with trickle, we observed a maximum
TCP throughput between the client VM and the server VM of 96.7 Mb/s.

Test Create-Only Create-and-Modify Time Difference

Private Files Commit Time 9.2 / 0.2 11.4 / 0.1 2.2
Public Files Commit Time 6.5 / 0.1 8.6 / 0.1 2.1
Commit Time Difference 2.7 2.8 0.1
Private Files Sync Time 7.2 / 0.1 13.4 / 0.1 6.2
Public Files Sync Time 5.2 / 0.1 11.3 / 0.1 6.1
Sync Time Difference 2.0 2.1 0.1

Table 5.1: Average, measured 1 Gb/s LAN performance test synchronization times /
sample standard deviations in seconds. Computed synchronization time differences
in seconds.

Test Create-Only Create-and-Modify Time Difference

Private Files Commit Time 15.3 / 0.1 17.5 / 0.1 2.2
Public Files Commit Time 12.7 / 0.1 15.0 / 0.3 2.3
Commit Time Difference 2.6 2.5 0.1
Private Files Sync Time 8.8 / 0.0 15.0 / 0.1 6.2
Public Files Sync Time 8.6 / 0.1 14.8 / 0.2 6.2
Sync Time Difference 0.2 0.2 0.0

Table 5.2: Average, measured 100 Mb/s LAN performance test synchronization
times / sample standard deviations in seconds. Computed synchronization time
differences in seconds.

The create-only and the create-and-modify tests were executed ten
times each. Table 5.1 shows the averaged, measured synchroniza-
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Figure 5.1: The long bars show the average, measured 1 Gb/s LAN performance test
synchronization times. The short, black error bars have a length of two standard
deviations.
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Figure 5.2: The long bars show the average, measured 100 Mb/s LAN performance
test synchronization times. The short, black error bars have a length of two standard
deviations.

tion times and the manually computed time differences for the 1 Gb/s
test. “Commit Time” refers to the synchronization times measured by

81



client.executors.TestPerformanceCommitter and “Sync Time” represents
the synchronization times from client.executors.TestPerformanceSyncer.
Table 5.1 also shows the standard deviations of the measurements. Figure 5.1
visualizes the values from Table 5.1. The results of the 100 Mb/s experiment are
shown in Table 5.2 and Figure 5.2.

In the following, we refer to the results of the 1 Gb/s experiment. Creating a
diff consumes usually more time and space than applying a diff due to the com-
plexity of the corresponding algorithms (cf. Section 3.8.2). Diff creation and the
update of the synchronization directory are the main contributors of the public
files commit time difference (2.1 s), as the diff to send is small. The public files
sync time difference (6.1 s) mostly depends on the time it takes to apply the diff,
copy the output into the working directory, and move the output into the syn-
chronization directory. Since the patch output is saved as a temporary file in
the synchronization directory, the patch output can be renamed to the synchro-
nization file name without copying. The communication costs which are caused
by requesting and receiving the small diff are negligible. The commit time dif-
ferences (2.7 s and 2.8 s) mostly reflect the encryption time, while the sync time
differences (2.0 s and 2.1 s) are mainly owing to decryption overhead. The pub-
lic files commit time in create-only mode (6.5 s) is higher than the corresponding
public files sync time (5.2 s), as client.executors.TestPerformanceCommitter

computes and sends a file’s hash prior to the file’s transmission (the server
checks the file’s metadata before it accepts the file’s content; cf. Section 3.11).
Class client.executors.TestPerformanceSyncer, however, computes the hash
of a file, while it is receiving the file from the server.

5.2.2 Internet Test

We also tested the performance of our network storage server over the Internet. We
conducted a performance test for Dropbox as well in order to compare Dropbox’s
performance to ours.

In order to test the performance of our service, we launched a server inside a VM
in Amazon’s EC2 (Elastic Compute Cloud) [Ama12c]. The VM was geographically
located in Northern California. The client ran on a computer in Passau, Germany.
The client tree contained a 10 MB test file in its working directory under a user’s
private folder. The test file was encrypted with AES-256 CBC prior to its transmis-
sion to the server. Data content was hashed with SHA-256 and HMAC-SHA-256
protected metadata. For each test run the client’s synchronization directory as well
as the server’s database and tree were initialized. We measured the time difference
between the transmission of the first TCP SYN and the first FIN packet with tcp-
dump [Lui12] on the client computer. Here we call the absolute value of the time
difference synchronization time. The client daemon sends the SYN and FIN pack-
ets, as it establishes and closes the single TLS connection to the server. When the
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connection had been established, the client daemon authenticates itself towards the
server and synchronizes detected changes. The detected changes only include the
addition of the 10 MB test file. We did not measure the execution time of the client
daemon’s synchronization method as we did in Section 5.2.1, since we are unable to
conduct analogous experiments with the closed source Dropbox daemon.

For the Dropbox performance tests, we created 10 MB files with random content
using test.RandomFileGenerator. We generated different random files for each
test run, since Dropbox only uploads the changes of a file, while we wanted to en-
sure that Dropbox needs to upload the entire file content instead. As we initialize
our own client and server application prior to each test run, our own client dae-
mon must upload a complete 10 MB test file as well. The Dropbox client also ran
on our test machine in Passau, Germany. Dropbox keeps the client-supplied data
on “Amazon’s Simple Storage Service (S3) in multiple data centers located across
the United States” [Dro12d]. All IP addresses of the Amazon EC2 servers which
Dropbox established connections to during our tests belonged to the server farm in
Northern Virginia (according to web page [Ama12a]). We used tcpdump to record
TCP SYN as well as FIN packets and noticed that Dropbox opens a SSL connection
to a server which is apparently located in San Francisco, when a file is dropped into
the Dropbox folder. Subsequently, Dropbox opens a SSL connection to an Amazon
EC2 server. When the synchronization finishes as indicated by Dropbox’s system
tray icon, Dropbox opens two connections to a server in San Francisco. A timeout
at the Amazon EC2 and the San Francisco servers seems to trigger the connection
termination, as only the server-side sends FIN packets. Moreover, the FIN packets
arrive a couple of seconds after the system tray icon had indicated that Dropbox
had successfully synchronized the files. During some test runs, multiple connections
to different EC2 servers were established. Our measured Dropbox synchronization
time is the absolute time difference between the first and the second SYN packet
which the Dropbox client sends to a San Francisco server. The synchronization time
coincides with the synchronization duration as indicated by Dropbox’s system tray
icon.

The client computer was a Fujitsu ESPRIMO P1500 running Ubuntu 12.04 (x86 64).
The machine had the Intel Core2 Quad Processor Q8300 (2.5 GHz), 4 GB
RAM, a NVIDIA Corporation MCP73 Gigabit Ethernet NIC, and one Hitachi
HDT721010SLA360 (3.5 in, SATA 3 Gb/s, 1 TB, 7200 RPM) HDD. The Linux
kernel version was 3.2.0-24-generic and the root as well as the temporary directory
were formatted with the ext4 file system. OpenJDK 7u3 served as the Java runtime
environment. We used version 1.4.0 of Dropbox. A Gigabit Ethernet switch con-
nected our client machine to a DSL router. The Internet connection had a download
bandwidth of 3456 kb/s and an upload bandwidth of 448 kb/s. The DSL connection
is a bottleneck of the network path between the client and the server owing to its
low bandwidth.

We ran the server VM as a Micro instance [Ama12b] in Amazon’s EC2. A Micro
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instance grants up to 2 EC2 Compute Units (for short periodic bursts), offers 613 MB
RAM, and relies on EBS (Elastic Block Store) for data storage. The VM used one
Intel Xeon E5430 (2.66 GHz) CPU. As for the operating system, we ran Ubuntu
12.04 Server (x86 64; AMI ID ami-87712ac2). The Linux kernel had version 3.2.0-24-
virtual and Xen 3.4.3-kaos t1micro acted as the hypervisor. The root and temporary
directory were formatted with ext4. OpenJDK 7u3 executed the server application.

Service Own Dropbox Dropbox
(Auto Throttling) (No Throttling)

Synchronization Time 227.7 / 2.2 364.7 / 3.0 246.2 / 2.6

Services Time Difference
Own vs. Dropbox (Auto Throttling) 137
Own vs. Dropbox (No Throttling) 18.5
Dropbox (Auto vs. No Throttling) 118.5

Table 5.3: Average, measured Internet performance test synchronization times /
sample standard deviations in seconds. Computed synchronization time differences
in seconds.
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Figure 5.3: The long bars show the average, measured Internet performance test
synchronization times. The short, black error bars have a length of two standard
deviations.

Table 5.3 shows the average, measured synchronization times of our service and
Dropbox. It summarizes the computed synchronization time differences between
the different services as well. We ran each test ten times per service and averaged
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the lowest five synchronization times, thereby ignoring outliers. Table 5.3 also shows
the standard deviations of the lowest five synchronization times. The values from
Table 5.3 are visualized in Figure 5.3.

Our service finished a test run in 227.7 s on average. As for Dropbox, we ran
the tests with the default settings, i.e. we did not throttle the download speed, but
chose to automatically throttle the upload speed. Dropbox then throttles the upload
speed to 75 % of the maximum upload speed [Dro12c]. With this setting, it took
Dropbox, on average, 364.7 s to synchronize the test file. In addition, we executed
the Dropbox tests without throttling, which resulted in an average synchronization
time of 246.2 s.

On average, our service finished the tests earlier than Dropbox, although Dropbox’s
Amazon servers were geographically closer to the client computer than the server our
server application ran on. The geographical distance differences are reflected by the
round-trip times between the hosts that we measured using ping. The round-trip
time between our client computer and our Amazon server in Northern California
was 215 ms, while the round-trip time between our client computer and a Dropbox
Amazon server in Northern Virginia was 146 ms. Moreover, Dropbox does not
have computational overhead owing to client-side encryption prior to transmission,
whereas our service does. Dropbox’s diff algorithm allegedly identifies file blocks
which are already in the cloud and does not upload these blocks anymore [And12].
Determining the changed blocks contributes to the measured synchronization time,
if the Dropbox client consulted the server for block information. Furthermore, it is
possible that the synchronization time of Dropbox is higher than the synchronization
of our service owing to the network route between the client and the server machine.

5.3 Attack Resistance

In this section, we analyze the implications of the attacks from Section 3.2.2. We
explain to which extent we are able to foil those attacks. If not specified otherwise,
data refers to file content.

Table 5.4 summarizes the security guarantees which our service provides, considering
different attacks. Paper [RKS02] contains a similar table that compares the security
guarantees of diverse storage systems.

A “change” attack involves carrying out valid modifications, whereas adversaries
conduct invalid modifications during a “destroy” attack (cf. Section 3.2.2). Readers
are able to detect destroy but not change attacks. In our case, file content, protected
metadata, and MAC value changes are invalid modifications, if the adversary did
not re-generate and update the keyed MAC value accordingly using the proper key.
All other modifications are considered valid, since readers cannot identify them as
incorrect.
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Attack leak change destroy

Adversary alone yes yes yes
Adversary on server yes no yes
Evicted group member yes yes yes
Evicted group member on server yes (future data) no yes (future data)
Malicious group member no yes yes
Malicious group member on server no no no
Message attacks yes
Denial-of-service no
Group server subversion no

Table 5.4: Overview of security guarantees provided by our service. A “yes” indi-
cates that our service is able to prevent the attack. A “no” means that our service
does not prevent the attack.

The following list analyzes our attack resistance in more detail.

• Registered users who do not belong to a group are unable to read and modify
data as well as metadata of other users, provided that they do not collude with
the server. Unregistered adversaries who are not on the server can neither read
nor modify data and metadata of any user.

• An adversary who has access to the server is able to delete data and metadata.
Adversaries on the server can also re-write the server’s history in a valid way,
without readers becoming aware of it. For example, an adversary on the server
could change history version numbers and delete history entries. However,
readers are able to detect invalid modifications which were carried out by
an adversary who colludes with the server, owing to MAC verification (cf.
Section 3.2.3). Moreover, such adversaries cannot decrypt data.

• Evicted group members that do not collude with the server can neither access
the group’s past nor future data as well as metadata, since the owner withdraws
access rights from the member on the server during an eviction. However,
evicted group members may possess copies of past group data which they had
obtained prior to their eviction.

• An evicted group member on the server is able to read past, but not future
data. Such attackers are unable to write future data without others becoming
aware of the change. However, evicted group members on the server can
modify past data and metadata in a valid way, if they colluded with the
server. Other group members would be unable to detect the modification. We
cannot identify adversarial group members, since they are able to generate
valid MACs for their supplied data using the group’s key.

• Malicious group members who are writers, are able to submit arbitrary group
data to the server. Moreover, such group members are able to generate valid
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MACs. Other group members are unable to identify the member who submit-
ted the group data. However, malicious group members can neither modify nor
destroy any data and metadata that is already present on the server. Malicious
group members can decrypt the group’s data.

• Malicious group members who have gained server access, are able to arbitrarily
re-write the server history of the group, while the other group members are
unable to determine which group member has carried out the changes.

• Eavesdroppers are unable to view transmitted plaintext data including plain-
text authentication credentials, as we use over-the-wire encryption that is pro-
vided by TLS. Since we employ client as well as server authentication and
protect the integrity of over-the-wire data using TLS (cf. Section 3.2.3), our
service withstands man-in-the-middle attacks.

• Attackers may attempt to launch DoS attacks in order to render the server
unavailable. We do no provide protection against DoS attacks.

• An adversary colluding with the group server can gain access rights to data,
since they are able to add, change, and destroy authentication credentials as
well as access right lists. Such adversaries are therefore able to withdraw
access rights from users. However, adversaries that have access to the group
server cannot decrypt data to which they have gained access. Moreover, such
attackers are unable to commit history changes without victims becoming
aware of the attack.

5.4 Extensions

Section 3.3 explains why our system does not support file name confidentiality and
random file access. As for file name confidentiality, the client could randomize
rather than encrypt file names. This could be achieved by providing the server with
a cryptographic hash of the file name instead of the plaintext file name itself. The
drawback is that other clients cannot reverse the hash, i.e. they cannot obtain the
original file name, due to the one-way property of the hash function. However, the
original file name could reside in a lockbox (cf. Section 3.7) that is encrypted with
the content key. This allows all clients which possess the content key to derive the
original file name.

The missing features intrusion protection, file name as well as file content searching,
and users quotas, which Section 3.3 mentions, could be added to our implementation.
The same holds for the features file compression, data redundancy, deduplication,
and file links that are also outlined in Section 3.3, since the server or client file sys-
tem could provide them. In addition, file compression and data redundancy could
be implemented on the client-side by a client.prepare.PreparationProvider (cf.
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Section 4.1.3). For example, the client.prepare.PreparationProvider imple-
mentation could compress the file, encrypt the plaintext, and encode the ciphertext
with an error-correcting code. When the client receives a file from a server, the
client.prepare.PreparationProvider implementation would reverse the steps,
i.e. it would decode, decrypt, and uncompress the file.

A file link points to an actual file and users may access the link as a regular file.
Therefore, a file link appears as a file copy to the user, although the file system does
not necessarily store the same file content twice. However, our file synchronization
algorithm (cf. Section 3.8) does not consider copy changes. Supporting copy changes
would allow to save storage space and network traffic. Moreover, copy changes could
facilitate group sharing, if each file was encrypted with a different key. When a user
copies a file from the private or a group folder into another folder, the client would
then submit copy change information and a lockbox (cf. Section 3.7) to the server.
The lockbox would contain the file key and be encrypted with the latest content key
from the access bundle (cf. Section 4.3) of the target folder.

Developers may integrate new cryptographic algorithms into the system owing to the
preparation interface (cf. Section 4.1.3). For example, a developer could implement a
client.prepare.PreparationProvider that encrypts each file with an individual
key. The implementation could make use of the lockbox concept (cf. Sections 2.2,
3.7). Section 3.7 outlines how signatures could be used instead of MACs for integrity
protection. A developer could realize that idea with a cryptography implementation.

As we provide a diff algorithm interface and a factory (cf. Section 4.5.3), it is easy
to integrate further diff implementations. The user could specify the desired diff
algorithm per folder by referencing the corresponding implementation in each access
bundle (cf. Section 4.3), or set the diff algorithm globally in the configuration (cf.
Section 4.2).
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Chapter 6

Conclusions

This thesis presented the design of a simple, yet effective, and efficient secure network
storage service. Our service enables to store data at untrusted providers without
sacrificing confidentiality. Furthermore, the service makes it possible to share data
in dynamic groups, while preserving data confidentiality. Our service offers file
versioning and incremental data synchronization. Since our service is layered on
top of the file system layer, we gain cross-platform compatibility. We compared our
design to alternatives, pointing out its assets and drawbacks.

Moreover, it demonstrated that the design is practicable, by presenting a fully-
functional implementation. The implementation is convenient to use owing to its
autonomous nature. As the user may supply own cryptographic and file difference
algorithms, it is extensible as well. It runs on all platforms which Java supports.
Tests showed that our software is performant in a LAN as well as over the Internet.
Our service outperformed the synchronization service Dropbox in our test scenario.

Future research could devise improvements and extensions for our service. Sec-
tion 5.4 outlines ideas for possible extensions. Furthermore, future work could con-
duct tests on a large scale and combine our service with existing cloud technologies.
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NNL Naor-Naor-Lotspiech

PBKDF2 Password-Based Key Derivation Function 2

PKI Public Key Infrastructure

PPP Point-to-Point Protocol

PRF Pseudorandom Function

RAID Redundant Array of Independent Disks

RAM Random Access Memory

RBAC Role-Based Access Control

RFC Request For Comments

RNG Random Number Generator

RPM Revolutions Per Minute
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RSA Rivest Shamir Adleman

S3 Simple Storage Service

SATA Serial Advanced Technology Attachment

SE Standard Edition

SHA Secure Hash Algorithm

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

TPM Trusted Platform Module

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

VM Virtual Machine

XOR exclusive or
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